EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Diffusion Processes and Related Problems in Analysis  Volume II

Download or read book Diffusion Processes and Related Problems in Analysis Volume II written by V. Wihstutz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the weekend of March 16-18, 1990 the University of North Carolina at Charlotte hosted a conference on the subject of stochastic flows, as part of a Special Activity Month in the Department of Mathematics. This conference was supported jointly by a National Science Foundation grant and by the University of North Carolina at Charlotte. Originally conceived as a regional conference for researchers in the Southeastern United States, the conference eventually drew participation from both coasts of the U. S. and from abroad. This broad-based par ticipation reflects a growing interest in the viewpoint of stochastic flows, particularly in probability theory and more generally in mathematics as a whole. While the theory of deterministic flows can be considered classical, the stochastic counterpart has only been developed in the past decade, through the efforts of Harris, Kunita, Elworthy, Baxendale and others. Much of this work was done in close connection with the theory of diffusion processes, where dynamical systems implicitly enter probability theory by means of stochastic differential equations. In this regard, the Charlotte conference served as a natural outgrowth of the Conference on Diffusion Processes, held at Northwestern University, Evanston Illinois in October 1989, the proceedings of which has now been published as Volume I of the current series. Due to this natural flow of ideas, and with the assistance and support of the Editorial Board, it was decided to organize the present two-volume effort.

Book Stochastic Analysis and Diffusion Processes

Download or read book Stochastic Analysis and Diffusion Processes written by Gopinath Kallianpur and published by OUP Oxford. This book was released on 2014-01-09 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Analysis and Diffusion Processes presents a simple, mathematical introduction to Stochastic Calculus and its applications. The book builds the basic theory and offers a careful account of important research directions in Stochastic Analysis. The breadth and power of Stochastic Analysis, and probabilistic behavior of diffusion processes are told without compromising on the mathematical details. Starting with the construction of stochastic processes, the book introduces Brownian motion and martingales. The book proceeds to construct stochastic integrals, establish the Itô formula, and discuss its applications. Next, attention is focused on stochastic differential equations (SDEs) which arise in modeling physical phenomena, perturbed by random forces. Diffusion processes are solutions of SDEs and form the main theme of this book. The Stroock-Varadhan martingale problem, the connection between diffusion processes and partial differential equations, Gaussian solutions of SDEs, and Markov processes with jumps are presented in successive chapters. The book culminates with a careful treatment of important research topics such as invariant measures, ergodic behavior, and large deviation principle for diffusions. Examples are given throughout the book to illustrate concepts and results. In addition, exercises are given at the end of each chapter that will help the reader to understand the concepts better. The book is written for graduate students, young researchers and applied scientists who are interested in stochastic processes and their applications. The reader is assumed to be familiar with probability theory at graduate level. The book can be used as a text for a graduate course on Stochastic Analysis.

Book Analysis For Diffusion Processes On Riemannian Manifolds

Download or read book Analysis For Diffusion Processes On Riemannian Manifolds written by Feng-yu Wang and published by World Scientific. This book was released on 2013-09-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic analysis on Riemannian manifolds without boundary has been well established. However, the analysis for reflecting diffusion processes and sub-elliptic diffusion processes is far from complete. This book contains recent advances in this direction along with new ideas and efficient arguments, which are crucial for further developments. Many results contained here (for example, the formula of the curvature using derivatives of the semigroup) are new among existing monographs even in the case without boundary.

Book Diffusion Processes and their Sample Paths

Download or read book Diffusion Processes and their Sample Paths written by Kiyosi Itô and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Itô and McKean.

Book Diffusion Processes and Partial Differential Equations

Download or read book Diffusion Processes and Partial Differential Equations written by Kazuaki Taira and published by . This book was released on 1988 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a careful and accessible exposition of functional analytic methods in stochastic analysis. It focuses on the relationship between Markov processes and elliptic boundary value problems and explores several recent developments in the theory of partial differential equations which have made further progress in the study of Markov processes possible. This book will have great appeal to both advanced students and researchers as an introduction to three interrelated subjects in analysis (Markov processes, semigroups, and elliptic boundary value problems), providing powerful methods for future research.

Book Stochastic Processes and Applications

Download or read book Stochastic Processes and Applications written by Grigorios A. Pavliotis and published by Springer. This book was released on 2014-11-19 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Book New Trends in Stochastic Analysis and Related Topics

Download or read book New Trends in Stochastic Analysis and Related Topics written by Huaizhong Zhao and published by World Scientific. This book was released on 2012 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.

Book Aspects of Brownian Motion

Download or read book Aspects of Brownian Motion written by Roger Mansuy and published by Springer Science & Business Media. This book was released on 2008-09-16 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic calculus and excursion theory are very efficient tools for obtaining either exact or asymptotic results about Brownian motion and related processes. This book focuses on special classes of Brownian functionals, including Gaussian subspaces of the Gaussian space of Brownian motion; Brownian quadratic funtionals; Brownian local times; Exponential functionals of Brownian motion with drift; Time spent by Brownian motion below a multiple of its one-sided supremum.

Book Stochastic Analysis and Related Topics

Download or read book Stochastic Analysis and Related Topics written by J.E. Lindstrom and published by CRC Press. This book was released on 1993-12-08 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: First published in 1993. Routledge is an imprint of Taylor & Francis, an informa company.

Book High Dimensional Probability II

Download or read book High Dimensional Probability II written by Evarist Giné and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: High dimensional probability, in the sense that encompasses the topics rep resented in this volume, began about thirty years ago with research in two related areas: limit theorems for sums of independent Banach space valued random vectors and general Gaussian processes. An important feature in these past research studies has been the fact that they highlighted the es sential probabilistic nature of the problems considered. In part, this was because, by working on a general Banach space, one had to discard the extra, and often extraneous, structure imposed by random variables taking values in a Euclidean space, or by processes being indexed by sets in R or Rd. Doing this led to striking advances, particularly in Gaussian process theory. It also led to the creation or introduction of powerful new tools, such as randomization, decoupling, moment and exponential inequalities, chaining, isoperimetry and concentration of measure, which apply to areas well beyond those for which they were created. The general theory of em pirical processes, with its vast applications in statistics, the study of local times of Markov processes, certain problems in harmonic analysis, and the general theory of stochastic processes are just several of the broad areas in which Gaussian process techniques and techniques from probability in Banach spaces have made a substantial impact. Parallel to this work on probability in Banach spaces, classical proba bility and empirical process theory were enriched by the development of powerful results in strong approximations.

Book Controlled Diffusion Processes

Download or read book Controlled Diffusion Processes written by N. V. Krylov and published by Springer Science & Business Media. This book was released on 2008-09-26 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic control theory is a relatively young branch of mathematics. The beginning of its intensive development falls in the late 1950s and early 1960s. ~urin~ that period an extensive literature appeared on optimal stochastic control using the quadratic performance criterion (see references in Wonham [76]). At the same time, Girsanov [25] and Howard [26] made the first steps in constructing a general theory, based on Bellman's technique of dynamic programming, developed by him somewhat earlier [4]. Two types of engineering problems engendered two different parts of stochastic control theory. Problems of the first type are associated with multistep decision making in discrete time, and are treated in the theory of discrete stochastic dynamic programming. For more on this theory, we note in addition to the work of Howard and Bellman, mentioned above, the books by Derman [8], Mine and Osaki [55], and Dynkin and Yushkevich [12]. Another class of engineering problems which encouraged the development of the theory of stochastic control involves time continuous control of a dynamic system in the presence of random noise. The case where the system is described by a differential equation and the noise is modeled as a time continuous random process is the core of the optimal control theory of diffusion processes. This book deals with this latter theory.

Book Markov Processes and Related Problems of Analysis

Download or read book Markov Processes and Related Problems of Analysis written by Evgeniĭ Borisovich Dynkin and published by Cambridge University Press. This book was released on 1982-09-23 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of Markov Processes has become a powerful tool in partial differential equations and potential theory with important applications to physics. Professor Dynkin has made many profound contributions to the subject and in this volume are collected several of his most important expository and survey articles. The content of these articles has not been covered in any monograph as yet. This account is accessible to graduate students in mathematics and operations research and will be welcomed by all those interested in stochastic processes and their applications.

Book Stochastic Analysis and Related Topics VI

Download or read book Stochastic Analysis and Related Topics VI written by Laurent Decreusefond and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the contributions of the participants of the Sixth Oslo-Silivri Workshop on Stochastic Analysis, held in Geilo from July 29 to August 6, 1996. There are two main lectures " Stochastic Differential Equations with Memory, by S.E.A. Mohammed, " Backward SDE's and Viscosity Solutions of Second Order Semilinear PDE's, by E. Pardoux. The main lectures are presented at the beginning of the volume. There is also a review paper at the third place about the stochastic calculus of variations on Lie groups. The contributing papers vary from SPDEs to Non-Kolmogorov type probabilistic models. We would like to thank " VISTA, a research cooperation between Norwegian Academy of Sciences and Letters and Den Norske Stats Oljeselskap (Statoil), " CNRS, Centre National de la Recherche Scientifique, " The Department of Mathematics of the University of Oslo, " The Ecole Nationale Superieure des Telecommunications, for their financial support. L. Decreusefond J. Gjerde B. 0ksendal A.S. Ustunel PARTICIPANTS TO THE 6TH WORKSHOP ON STOCHASTIC ANALYSIS Vestlia HØyfjellshotell, Geilo, Norway, July 28 -August 4, 1996. E-mail: [email protected] Aureli ALABERT Departament de Matematiques Laurent DECREUSEFOND Universitat Autonoma de Barcelona Ecole Nationale Superieure des Telecom 08193-Bellaterra munications CATALONIA (Spain) Departement Reseaux E-mail: [email protected] 46, rue Barrault Halvard ARNTZEN 75634 Paris Cedex 13 Dept. of Mathematics FRANCE University of Oslo E-mail: [email protected] Box 1053 Blindern Laurent DENIS N-0316 Oslo C.M.I

Book The Malliavin Calculus and Related Topics

Download or read book The Malliavin Calculus and Related Topics written by David Nualart and published by Springer Science & Business Media. This book was released on 2006-02-27 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Malliavin calculus is an infinite-dimensional differential calculus on a Gaussian space, developed to provide a probabilistic proof to Hörmander's sum of squares theorem but has found a range of applications in stochastic analysis. This book presents the features of Malliavin calculus and discusses its main applications. This second edition includes recent applications in finance and a chapter devoted to the stochastic calculus with respect to the fractional Brownian motion.

Book Ergodic Control of Diffusion Processes

Download or read book Ergodic Control of Diffusion Processes written by Ari Arapostathis and published by Cambridge University Press. This book was released on 2012 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive account of controlled diffusions with a focus on ergodic or 'long run average' control.

Book Random Dynamical Systems

    Book Details:
  • Author : Ludwig Arnold
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-17
  • ISBN : 3662128780
  • Pages : 590 pages

Download or read book Random Dynamical Systems written by Ludwig Arnold and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first systematic presentation of the theory of dynamical systems under the influence of randomness, this book includes products of random mappings as well as random and stochastic differential equations. The basic multiplicative ergodic theorem is presented, providing a random substitute for linear algebra. On its basis, many applications are detailed. Numerous instructive examples are treated analytically or numerically.

Book Stochastic Methods in Neuroscience

Download or read book Stochastic Methods in Neuroscience written by Carlo Laing and published by Oxford University Press. This book was released on 2010 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Great interest is now being shown in computational and mathematical neuroscience, fuelled in part by the rise in computing power, the ability to record large amounts of neurophysiological data, and advances in stochastic analysis. These techniques are leading to biophysically more realistic models. It has also become clear that both neuroscientists and mathematicians profit from collaborations in this exciting research area.Graduates and researchers in computational neuroscience and stochastic systems, and neuroscientists seeking to learn more about recent advances in the modelling and analysis of noisy neural systems, will benefit from this comprehensive overview. The series of self-contained chapters, each written by experts in their field, covers key topics such as: Markov chain models for ion channel release; stochastically forced single neurons and populations of neurons; statistical methods for parameterestimation; and the numerical approximation of these stochastic models.Each chapter gives an overview of a particular topic, including its history, important results in the area, and future challenges, and the text comes complete with a jargon-busting index of acronyms to allow readers to familiarize themselves with the language used.