Download or read book Multiphase Microfluidics The Diffuse Interface Model written by Roberto Mauri and published by Springer Science & Business Media. This book was released on 2012-05-31 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diffuse interface (D.I.) model for muliphase flows.- Phase separation of viscous ternary liquid mixtures.- Dewetting and decomposing films of simple and complex liquids.- Phase-field models. Multiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happens, for example, in the coalescence and breakup of bubbles and drops, the wetting and dewetting of solid surfaces and, in general, im micro-devices. The diffuse interface model resolves these problems by assuming that all quantities can vary continuously, so that interfaces have a non-zero thickness, i.e. they are "diffuse". The contributions in this book review the theory and describe some relevant applications of the diffuse interface model for one-component, two-phase fluids and for liquid binary mixtures, to model multiphase flows in confined geometries.
Download or read book Transport Processes at Fluidic Interfaces written by Dieter Bothe and published by Birkhäuser. This book was released on 2017-07-13 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplinary research approach combining Applied Analysis, Numerical Mathematics, Interface Physics and Chemistry, as well as relevant research areas in the Engineering Sciences. The contributions originated from the joint interdisciplinary research projects in the DFG Priority Programme SPP 1506 “Transport Processes at Fluidic Interfaces.”
Download or read book Numerical Methods for Two phase Incompressible Flows written by Sven Gross and published by Springer Science & Business Media. This book was released on 2011-04-26 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first monograph providing an introduction to and an overview of numerical methods for the simulation of two-phase incompressible flows. The Navier-Stokes equations describing the fluid dynamics are examined in combination with models for mass and surfactant transport. The book pursues a comprehensive approach: important modeling issues are treated, appropriate weak formulations are derived, level set and finite element discretization techniques are analyzed, efficient iterative solvers are investigated, implementational aspects are considered and the results of numerical experiments are presented. The book is aimed at M Sc and PhD students and other researchers in the fields of Numerical Analysis and Computational Engineering Science interested in the numerical treatment of two-phase incompressible flows.
Download or read book The Navier Stokes Equations written by Hermann Sohr and published by Springer Science & Business Media. This book was released on 2012-12-13 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.
Download or read book Computational Methods For Two phase Flow And Particle Transport With Cd rom written by Wen Ho Lee and published by World Scientific Publishing Company. This book was released on 2013-03-22 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.
Download or read book Theoretical Microfluidics written by Henrik Bruus and published by Oxford University Press. This book was released on 2007-09-27 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics is a young and rapidly expanding scientific discipline, which deals with fluids and solutions in miniaturized systems, the so-called lab-on-a-chip systems. It has applications in chemical engineering, pharmaceutics, biotechnology and medicine. As the lab-on-a-chip systems grow in complexity, a proper theoretical understanding becomes increasingly important. The basic idea of the book is to provide a self-contained formulation of the theoretical framework of microfluidics, and at the same time give physical motivation and examples from lab-on-a-chip technology. After three chapters introducing microfluidics, the governing equations for mass, momentum and energy, and some basic flow solutions, the following 14 chapters treat hydraulic resistance/compliance, diffusion/dispersion, time-dependent flow, capillarity, electro- and magneto-hydrodynamics, thermal transport, two-phase flow, complex flow patterns and acousto-fluidics, as well as the new fields of opto- and nano-fluidics. Throughout the book simple models with analytical solutions are presented to provide the student with a thorough physical understanding of order of magnitudes and various selected microfluidic phenomena and devices. The book grew out of a set of well-tested lecture notes. It is with its many pedagogical exercises designed as a textbook for an advanced undergraduate or first-year graduate course. It is also well suited for self-study.
Download or read book Interfaces Modeling Analysis Numerics written by Eberhard Bänsch and published by Springer Nature. This book was released on 2023-11-11 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes are dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems appearing in geometry and in various applications, ranging from crystal growth, tumour growth, biological membranes to porous media, two-phase flows, fluid-structure interactions, and shape optimization. We first give an introduction to classical methods from differential geometry and systematically derive the governing equations from physical principles. Then we will analyse parametric approaches to interface evolution problems and derive numerical methods which will be thoroughly analysed. In addition, implicit descriptions of interfaces such as phase field and level set methods will be analysed. Finally, we will discuss numerical methods for complex interface evolutions and will focus on two phase flow problems as an important example of such evolutions.
Download or read book The Cahn Hilliard Equation Recent Advances and Applications written by Alain Miranville and published by SIAM. This book was released on 2019-09-09 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to present a detailed discussion of both classical and recent results on the popular CahnHilliard equation and some of its variants. The focus is on mathematical analysis of CahnHilliard models, with an emphasis on thermodynamically relevant logarithmic nonlinear terms, for which several questions are still open. Initially proposed in view of applications to materials science, the CahnHilliard equation is now applied in many other areas, including image processing, biology, ecology, astronomy, and chemistry. In particular, the author addresses applications to image inpainting and tumor growth. Many chapters include open problems and directions for future research. The Cahn-Hilliard Equation: Recent Advances and Applications is intended for graduate students and researchers in applied mathematics, especially those interested in phase separation models and their generalizations and applications to other fields. Materials scientists also will find this text of interest.
Download or read book Linear and Quasilinear Parabolic Problems written by Herbert Amann and published by Birkhäuser. This book was released on 2012-12-06 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this treatise we present the semigroup approach to quasilinear evolution equa of parabolic type that has been developed over the last ten years, approxi tions mately. It emphasizes the dynamic viewpoint and is sufficiently general and flexible to encompass a great variety of concrete systems of partial differential equations occurring in science, some of those being of rather 'nonstandard' type. In partic ular, to date it is the only general method that applies to noncoercive systems. Although we are interested in nonlinear problems, our method is based on the theory of linear holomorphic semigroups. This distinguishes it from the theory of nonlinear contraction semigroups whose basis is a nonlinear version of the Hille Yosida theorem: the Crandall-Liggett theorem. The latter theory is well-known and well-documented in the literature. Even though it is a powerful technique having found many applications, it is limited in its scope by the fact that, in concrete applications, it is closely tied to the maximum principle. Thus the theory of nonlinear contraction semigroups does not apply to systems, in general, since they do not allow for a maximum principle. For these reasons we do not include that theory.
Download or read book Mathematical Fluid Dynamics Present and Future written by Yoshihiro Shibata and published by Springer. This book was released on 2016-12-01 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents original papers ranging from an experimental study on cavitation jets to an up-to-date mathematical analysis of the Navier-Stokes equations for free boundary problems, reflecting topics featured at the International Conference on Mathematical Fluid Dynamics, Present and Future, held 11–14 November 2014 at Waseda University in Tokyo. The contributions address subjects in one- and two-phase fluid flows, including cavitation, liquid crystal flows, plasma flows, and blood flows. Written by internationally respected experts, these papers highlight the connections between mathematical, experimental, and computational fluid dynamics. The book is aimed at a wide readership in mathematics and engineering, including researchers and graduate students interested in mathematical fluid dynamics.
Download or read book Direct Numerical Simulations of Gas Liquid Multiphase Flows written by Grétar Tryggvason and published by Cambridge University Press. This book was released on 2011-03-10 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and interface terms are included as singularity distributions. Several applications are discussed, showing how direct numerical simulations have helped researchers advance both our understanding and our ability to make predictions. The final chapter gives an overview of recent studies of flows with relatively complex physics, such as mass transfer and chemical reactions, solidification and boiling, and includes extensive references to current work.
Download or read book Recent Developments of Mathematical Fluid Mechanics written by Herbert Amann and published by Birkhäuser. This book was released on 2016-03-17 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this proceeding is addressed to present recent developments of the mathematical research on the Navier-Stokes equations, the Euler equations and other related equations. In particular, we are interested in such problems as: 1) existence, uniqueness and regularity of weak solutions2) stability and its asymptotic behavior of the rest motion and the steady state3) singularity and blow-up of weak and strong solutions4) vorticity and energy conservation5) fluid motions around the rotating axis or outside of the rotating body6) free boundary problems7) maximal regularity theorem and other abstract theorems for mathematical fluid mechanics.
Download or read book An Introduction To Hydraulics Of Fine Sediment Transport written by Ashish J Mehta and published by World Scientific Publishing Company. This book was released on 2013-09-30 with total page 1060 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents observations on the phenomena of fine sediment transport and their explanations under process-related divisions such as flocculation, erosion, and deposition.The text is a compilation of the author's lecture notes from nearly four decades of teaching and guiding graduate students in civil and coastal engineering. Illustrations of fine sediment transport processes and their complexities given in the book are taken from field and laboratory-based observations by the author and his students, as well as numerous investigators.The wide-ranging composition of particles (of inorganic and organic matter), their universal presence and their complex interactions with hydraulic forces make this branch of science a difficult one to deal with in a single treatise. It is therefore essential to study fine sediment transport as an independent subject rather than cover it in no more than a single chapter as many texts on coarse sediment transport have done.Even though the entire coverage is “introductory”, the twelve chapters collectively include more material than what can be reasonably dealt with in a one semester, three-credit course.The book includes an extensive description of the components of fine-grained — especially cohesive — sediment transport. It covers the development of the subject in scientific and engineering applications mainly from the 1950s to its present state. Solved examples and chapter-end exercises are also included.This text is aimed at senior civil engineering undergraduates and graduate students who, in the normal course of their study, seldom come across the subject of fine sediment transport in their curricula. Interested students should have a basic understanding of the mechanics of fluid flow and open channel hydraulics.
Download or read book Flowing Matter written by Federico Toschi and published by Springer Nature. This book was released on 2019-09-25 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena. Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents. Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter. This book is the legacy of the COST Action MP1305 “Flowing Matter”.
Download or read book Chemical Engineering Fluid Mechanics written by Ron Darby and published by CRC Press. This book was released on 2016-11-30 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with the most current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in the chemical and related industries, in addition to a fundamental understanding of these applications based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition includes many more examples.
Download or read book Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics written by Titus Petrila and published by Springer Science & Business Media. This book was released on 2006-06-14 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book – through the topics and the problems approach – aims at filling a gap, a real need in our literature concerning CFD (Computational Fluid Dynamics). Our presentation results from a large documentation and focuses on reviewing the present day most important numerical and computational methods in CFD. Many theoreticians and experts in the field have expressed their - terest in and need for such an enterprise. This was the motivation for carrying out our study and writing this book. It contains an important systematic collection of numerical working instruments in Fluid Dyn- ics. Our current approach to CFD started ten years ago when the Univ- sity of Paris XI suggested a collaboration in the field of spectral methods for fluid dynamics. Soon after – preeminently studying the numerical approaches to Navier–Stokes nonlinearities – we completed a number of research projects which we presented at the most important inter- tional conferences in the field, to gratifying appreciation. An important qualitative step in our work was provided by the dev- opment of a computational basis and by access to a number of expert softwares. This fact allowed us to generate effective working programs for most of the problems and examples presented in the book, an - pect which was not taken into account in most similar studies that have already appeared all over the world.
Download or read book Discontinuous Galerkin Method written by Vít Dolejší and published by Springer. This book was released on 2015-07-17 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.