Download or read book Differential Neural Networks for Robust Nonlinear Control written by Alexander S. Poznyak and published by World Scientific. This book was released on 2001 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical, etc.). Contents: Theoretical Study: Neural Networks Structures; Nonlinear System Identification: Differential Learning; Sliding Mode Identification: Algebraic Learning; Neural State Estimation; Passivation via Neuro Control; Neuro Trajectory Tracking; Neurocontrol Applications: Neural Control for Chaos; Neuro Control for Robot Manipulators; Identification of Chemical Processes; Neuro Control for Distillation Column; General Conclusions and Future Work; Appendices: Some Useful Mathematical Facts; Elements of Qualitative Theory of ODE; Locally Optimal Control and Optimization. Readership: Graduate students, researchers, academics/lecturers and industrialists in neural networks.
Download or read book Differential Neural Networks For Robust Nonlinear Control Identification State Estimation And Trajectory Tracking written by Alex Poznyak and published by World Scientific. This book was released on 2001-09-28 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical, etc.).
Download or read book Advances in Neural Networks ISNN 2004 written by Fuliang Yin and published by Springer. This book was released on 2011-04-07 with total page 1054 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the International Symposium on Neural N- works (ISNN 2004) held in Dalian, Liaoning, China duringAugust 19–21, 2004. ISNN 2004 received over 800 submissions from authors in ?ve continents (Asia, Europe, North America, South America, and Oceania), and 23 countries and regions (mainland China, Hong Kong, Taiwan, South Korea, Japan, Singapore, India, Iran, Israel, Turkey, Hungary, Poland, Germany, France, Belgium, Spain, UK, USA, Canada, Mexico, - nezuela, Chile, andAustralia). Based on reviews, the Program Committee selected 329 high-quality papers for presentation at ISNN 2004 and publication in the proceedings. The papers are organized into many topical sections under 11 major categories (theo- tical analysis; learning and optimization; support vector machines; blind source sepa- tion,independentcomponentanalysis,andprincipalcomponentanalysis;clusteringand classi?cation; robotics and control; telecommunications; signal, image and time series processing; detection, diagnostics, and computer security; biomedical applications; and other applications) covering the whole spectrum of the recent neural network research and development. In addition to the numerous contributed papers, ?ve distinguished scholars were invited to give plenary speeches at ISNN 2004. ISNN 2004 was an inaugural event. It brought together a few hundred researchers, educators,scientists,andpractitionerstothebeautifulcoastalcityDalianinnortheastern China. It provided an international forum for the participants to present new results, to discuss the state of the art, and to exchange information on emerging areas and future trends of neural network research. It also created a nice opportunity for the participants to meet colleagues and make friends who share similar research interests.
Download or read book Modern Sliding Mode Control Theory written by Giorgio Bartolini and published by Springer Science & Business Media. This book was released on 2008-04-24 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise book covers modern sliding mode control theory. The authors identify key contributions defining the theoretical and applicative state-of-the-art of the sliding mode control theory and the most promising trends of the ongoing research activities.
Download or read book Recent Advances in Intelligent Control Systems written by Wen Yu and published by Springer Science & Business Media. This book was released on 2009-05-27 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Recent Advances in Intelligent Control Systems" gathers contributions from workers around the world and presents them in four categories according to the style of control employed: fuzzy control; neural control; fuzzy neural control; and intelligent control. The contributions illustrate the interdisciplinary antecedents of intelligent control and contrast its results with those of more traditional control methods. A variety of design examples, drawn primarily from robotics and mechatronics but also representing process and production engineering, large civil structures, network flows, and others, provide instances of the application of computational intelligence for control. Presenting state-of-the-art research, this collection will be of benefit to researchers in automatic control, automation, computer science (especially artificial intelligence) and mechatronics while graduate students and practicing control engineers working with intelligent systems will find it a good source of study material.
Download or read book Reinforcement Learning and Approximate Dynamic Programming for Feedback Control written by Frank L. Lewis and published by John Wiley & Sons. This book was released on 2013-01-28 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both single player decision and control and multi-player games. Edited by the pioneers of RL and ADP research, the book brings together ideas and methods from many fields and provides an important and timely guidance on controlling a wide variety of systems, such as robots, industrial processes, and economic decision-making.
Download or read book Artificial Intelligence and Industrial Applications written by Tawfik Masrour and published by Springer Nature. This book was released on 2020-07-18 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected papers from Artificial Intelligence and Industrial Applications (A2IA’2020), the first installment of an annual international conference organized by ENSAM-Meknes at Moulay Ismail University, Morocco. The 29 papers presented here were carefully reviewed and selected from 141 submissions by an international scientific committee. They address various aspects of artificial intelligence such as digital twin, multiagent systems, deep learning, image processing and analysis, control, prediction, modeling, optimization and design, as well as AI applications in industry, health, energy, agriculture, and education. The book is intended for AI experts, offering them a valuable overview and global outlook for the future, and highlights a wealth of innovative ideas and recent, important advances in AI applications, both of a foundational and practical nature. It will also appeal to non-experts who are curious about this timely and important subject.
Download or read book Advances in Neural Networks ISNN 2011 written by Derong Liu and published by Springer Science & Business Media. This book was released on 2011-05-10 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set LNCS 6675, 6676 and 6677 constitutes the refereed proceedings of the 8th International Symposium on Neural Networks, ISNN 2011, held in Guilin, China, in May/June 2011. The total of 215 papers presented in all three volumes were carefully reviewed and selected from 651 submissions. The contributions are structured in topical sections on computational neuroscience and cognitive science; neurodynamics and complex systems; stability and convergence analysis; neural network models; supervised learning and unsupervised learning; kernel methods and support vector machines; mixture models and clustering; visual perception and pattern recognition; motion, tracking and object recognition; natural scene analysis and speech recognition; neuromorphic hardware, fuzzy neural networks and robotics; multi-agent systems and adaptive dynamic programming; reinforcement learning and decision making; action and motor control; adaptive and hybrid intelligent systems; neuroinformatics and bioinformatics; information retrieval; data mining and knowledge discovery; and natural language processing.
Download or read book Unmanned Driving Systems for Smart Trains written by Hui Liu and published by Elsevier. This book was released on 2020-11-13 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned Driving Systems for Smart Trains explores the core technologies involved in unmanned driving systems for smart railways and trains, from foundational theory to the latest advances. The volume introduces the key technologies, research results and frontiers of the field. Each chapter includes practical cases to ground theory in practice. Seven chapters cover key aspects of unmanned driving systems for smart trains, including performance evaluation, algorithm-based reasoning and learning strategy, main control parameters, data mining and processing, energy saving optimization and control, and intelligent algorithm simulation platforms. This book will help researchers find solutions in developing better unmanned driving systems. - Responds to the expansion of smart railways and the adoption of unmanned global systems - Covers core technologies of unmanned driving systems for smart trains - Details a large number of case studies and experimental designs for unmanned railway systems - Adopts a multidisciplinary view where disciplines intersect at key points - Gives both foundational theory and the latest theoretical and practical advances for unmanned railways
Download or read book Bio inspired Algorithms for Engineering written by Nancy Arana-Daniel and published by Butterworth-Heinemann. This book was released on 2018-02-03 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bio-inspired Algorithms for Engineering builds a bridge between the proposed bio-inspired algorithms developed in the past few decades and their applications in real-life problems, not only in an academic context, but also in the real world. The book proposes novel algorithms to solve real-life, complex problems, combining well-known bio-inspired algorithms with new concepts, including both rigorous analyses and unique applications. It covers both theoretical and practical methodologies, allowing readers to learn more about the implementation of bio-inspired algorithms. This book is a useful resource for both academic and industrial engineers working on artificial intelligence, robotics, machine learning, vision, classification, pattern recognition, identification and control. - Presents real-time implementation and simulation results for all the proposed schemes - Offers a comparative analysis and rigorous analysis of the convergence of proposed algorithms - Provides a guide for implementing each application at the end of each chapter - Includes illustrations, tables and figures that facilitate the reader's comprehension of the proposed schemes and applications
Download or read book Advances in Computational Intelligence written by Wen Yu and published by Springer Science & Business Media. This book was released on 2009-08-18 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the second International Workshop on Advanced Computational Intelligence (IWACI 2009), with a sequel of IWACI 2008 successfully held in Macao, China. IWACI 2009 provided a high-level international forum for scientists, engineers, and educators to present state-of-the-art research in computational intelligence and related fields. Over the past decades, computational intelligence community has witnessed t- mendous efforts and developments in all aspects of theoretical foundations, archit- tures and network organizations, modelling and simulation, empirical study, as well as a wide range of applications across different domains. IWACI 2009 provided a great platform for the community to share their latest research results, discuss critical future research directions, stimulate innovative research ideas, as well as facilitate inter- tional multidisciplinary collaborations. IWACI 2009 received 146 submissions from about 373 authors in 26 countries and regions (Australia, Brazil, Canada, China, Chile, Hong Kong, India, Islamic Republic of Iran, Japan, Jordan, Macao, Malaysia, Mexico, Pakistan, Philippines, Qatar, Republic of Korea, Singapore, South Africa, Sri Lanka, Spain, Taiwan, Thailand, UK, USA, Ve- zuela, Vietnam, and Yemen) across six continents (Asia, Europe, North America, South America, Africa, and Oceania). Based on the rigorous peer reviews by the Program Committee members, 52 high-quality papers were selected for publication in this book, with an acceptance rate of 36.3%. These papers cover major topics of the theoretical research, empirical study, and applications of computational intelligence.
Download or read book Nonlinear Pinning Control of Complex Dynamical Networks written by Edgar N. Sanchez and published by CRC Press. This book was released on 2021-08-19 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents two nonlinear control strategies for complex dynamical networks. First, sliding-mode control is used, and then the inverse optimal control approach is employed. For both cases, model-based is considered in Chapter 3 and Chapter 5; then, Chapter 4 and Chapter 6 are based on determining a model for the unknow system using a recurrent neural network, using on-line extended Kalman filtering for learning. The book is organized in four sections. The first one covers mathematical preliminaries, with a brief review for complex networks, and the pinning methodology. Additionally, sliding-mode control and inverse optimal control are introduced. Neural network structures are also discussed along with a description of the high-order ones. The second section presents the analysis and simulation results for sliding-mode control for identical as well as non-identical nodes. The third section describes analysis and simulation results for inverse optimal control considering identical or non-identical nodes. Finally, the last section presents applications of these schemes, using gene regulatory networks and microgrids as examples.
Download or read book Advances in Neural Networks ISNN 2018 written by Tingwen Huang and published by Springer. This book was released on 2018-05-25 with total page 879 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 15th International Symposium on Neural Networks, ISNN 2018, held in Minsk, Belarus in June 2018.The 98 revised regular papers presented in this volume were carefully reviewed and selected from 214 submissions. The papers cover many topics of neural network-related research including intelligent control, neurodynamic analysis, bio-signal, bioinformatics and biomedical engineering, clustering, classification, forecasting, models, algorithms, cognitive computation, machine learning, and optimization.
Download or read book Artificial Neural Networks ICANN 2009 written by Cesare Alippi and published by Springer. This book was released on 2009-10-01 with total page 1034 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is part of the two-volume proceedings of the 19th International Conf- ence on Artificial Neural Networks (ICANN 2009), which was held in Cyprus during September 14–17, 2009. The ICANN conference is an annual meeting sp- sored by the European Neural Network Society (ENNS), in cooperation with the - ternational Neural Network Society (INNS) and the Japanese Neural Network Society (JNNS). ICANN 2009 was technically sponsored by the IEEE Computational Intel- gence Society. This series of conferences has been held annually since 1991 in various European countries and covers the field of neurocomputing, learning systems and related areas. Artificial neural networks provide an information-processing structure inspired by biological nervous systems. They consist of a large number of highly interconnected processing elements, with the capability of learning by example. The field of artificial neural networks has evolved significantly in the last two decades, with active partici- tion from diverse fields, such as engineering, computer science, mathematics, artificial intelligence, system theory, biology, operations research, and neuroscience. Artificial neural networks have been widely applied for pattern recognition, control, optimization, image processing, classification, signal processing, etc.
Download or read book Proceedings of the Scientific Practical Conference Research and Development 2016 written by K. V. Anisimov and published by Springer. This book was released on 2017-12-04 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book relates to the III Annual Conference hosted by The Ministry of Education and Science of the Russian Federation in December 2016. This event has summarized, analyzed and discussed the interim results, academic outputs and scientific achievements of the Russian Federal Targeted Programme “Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020.” It contains 75 selected papers from 6 areas considered priority by the Federal Targeted Programme: computer science, ecology & environment sciences; energy and energy efficiency; lifesciences; nanoscience & nanotechnology and transport & communications. The chapters report the results of the 3-years research projects supported by the Programme and finalized in 2016.
Download or read book PID Control with Intelligent Compensation for Exoskeleton Robots written by Wen Yu and published by Academic Press. This book was released on 2018-01-10 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: PID Control with Intelligent Compensation for Exoskeleton Robots explains how to use neural PD and PID controls to reduce integration gain, and provides explicit conditions on how to select linear PID gains using proof of semi-global asymptotic stability and local asymptotic stability with a velocity observer. These conditions are applied in both task and joint spaces, with PID controllers compensated by neural networks. This is a great resource on how to combine traditional PD/PID control techniques with intelligent control. Dr. Wen Yu presents several leading-edge methods for designing neural and fuzzy compensators with high-gain velocity observers for PD control using Lyapunov stability. Proportional-integral-derivative (PID) control is widely used in biomedical and industrial robot manipulators. An integrator in a PID controller reduces the bandwidth of the closed-loop system, leads to less-effective transient performance and may even destroy stability. Many robotic manipulators use proportional-derivative (PD) control with gravity and friction compensations, but improved gravity and friction models are needed. The introduction of intelligent control in these systems has dramatically changed the face of biomedical and industrial control engineering. - Discusses novel PD and PID controllers for biomedical and industrial robotic applications, demonstrating how PD and PID with intelligent compensation is more effective than other model-based compensations - Presents a stability analysis of the book for industrial linear PID - Includes practical applications of robotic PD/PID control, such as serial sliding mode, explicit conditions for linear PID and high gain observers for neural PD control - Includes applied exoskeleton applications and MATLAB code for simulations and applications
Download or read book Artificial Higher Order Neural Networks for Modeling and Simulation written by Zhang, Ming and published by IGI Global. This book was released on 2012-10-31 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.