EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Differential Geometry in Statistical Inference

Download or read book Differential Geometry in Statistical Inference written by Shun'ichi Amari and published by IMS. This book was released on 1987 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Differential Geometrical Methods in Statistics

Download or read book Differential Geometrical Methods in Statistics written by Shun-ichi Amari and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "In this Lecture Note volume the author describes his differential-geometric approach to parametrical statistical problems summarizing the results he had published in a series of papers in the last five years. The author provides a geometric framework for a special class of test and estimation procedures for curved exponential families. ... ... The material and ideas presented in this volume are important and it is recommended to everybody interested in the connection between statistics and geometry ..." #Metrika#1 "More than hundred references are given showing the growing interest in differential geometry with respect to statistics. The book can only strongly be recommended to a geodesist since it offers many new insights into statistics on a familiar ground." #Manuscripta Geodaetica#2

Book Methods of Information Geometry

Download or read book Methods of Information Geometry written by Shun-ichi Amari and published by American Mathematical Soc.. This book was released on 2000 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information geometry provides the mathematical sciences with a fresh framework of analysis. This book presents a comprehensive introduction to the mathematical foundation of information geometry. It provides an overview of many areas of applications, such as statistics, linear systems, information theory, quantum mechanics, and convex analysis.

Book Information Geometry and Its Applications

Download or read book Information Geometry and Its Applications written by Shun-ichi Amari and published by Springer. This book was released on 2016-02-02 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.

Book Differential Geometry and Statistics

Download or read book Differential Geometry and Statistics written by M.K. Murray and published by CRC Press. This book was released on 1993-04-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since the introduction by Rao in 1945 of the Fisher information metric on a family of probability distributions, there has been interest among statisticians in the application of differential geometry to statistics. This interest has increased rapidly in the last couple of decades with the work of a large number of researchers. Until now an impediment to the spread of these ideas into the wider community of statisticians has been the lack of a suitable text introducing the modern coordinate free approach to differential geometry in a manner accessible to statisticians. Differential Geometry and Statistics aims to fill this gap. The authors bring to this book extensive research experience in differential geometry and its application to statistics. The book commences with the study of the simplest differentiable manifolds - affine spaces and their relevance to exponential families, and goes on to the general theory, the Fisher information metric, the Amari connections and asymptotics. It culminates in the theory of vector bundles, principal bundles and jets and their applications to the theory of strings - a topic presently at the cutting edge of research in statistics and differential geometry.

Book Applications of Differential Geometry to Econometrics

Download or read book Applications of Differential Geometry to Econometrics written by Paul Marriott and published by Cambridge University Press. This book was released on 2000-08-31 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 2000, this volume was an early example of the application of differential geometry to econometrics.

Book Statistical Decision Rules and Optimal Inference

Download or read book Statistical Decision Rules and Optimal Inference written by N. N. Cencov and published by American Mathematical Soc.. This book was released on 2000-04-19 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: None available in plain English.

Book Asymptotic Theory of Statistical Inference for Time Series

Download or read book Asymptotic Theory of Statistical Inference for Time Series written by Masanobu Taniguchi and published by Springer. This book was released on 2012-10-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.

Book Nonparametric Inference on Manifolds

Download or read book Nonparametric Inference on Manifolds written by Abhishek Bhattacharya and published by Cambridge University Press. This book was released on 2012-04-05 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ideal for statisticians, this book will also interest probabilists, mathematicians, computer scientists, and morphometricians with mathematical training. It presents a systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important applications in medical diagnostics, image analysis and machine vision.

Book Geometry and Statistics

Download or read book Geometry and Statistics written by and published by Academic Press. This book was released on 2022-07-15 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry and Statistics, Volume 46 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Statistics series - Updated release includes the latest information on Geometry and Statistics

Book Information Geometry

Download or read book Information Geometry written by Geert Verdoolaege and published by MDPI. This book was released on 2019-04-04 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Special Issue of the journal Entropy, titled “Information Geometry I”, contains a collection of 17 papers concerning the foundations and applications of information geometry. Based on a geometrical interpretation of probability, information geometry has become a rich mathematical field employing the methods of differential geometry. It has numerous applications to data science, physics, and neuroscience. Presenting original research, yet written in an accessible, tutorial style, this collection of papers will be useful for scientists who are new to the field, while providing an excellent reference for the more experienced researcher. Several papers are written by authorities in the field, and topics cover the foundations of information geometry, as well as applications to statistics, Bayesian inference, machine learning, complex systems, physics, and neuroscience.

Book Asymptotic Theory Of Quantum Statistical Inference  Selected Papers

Download or read book Asymptotic Theory Of Quantum Statistical Inference Selected Papers written by Masahito Hayashi and published by World Scientific. This book was released on 2005-02-21 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum statistical inference, a research field with deep roots in the foundations of both quantum physics and mathematical statistics, has made remarkable progress since 1990. In particular, its asymptotic theory has been developed during this period. However, there has hitherto been no book covering this remarkable progress after 1990; the famous textbooks by Holevo and Helstrom deal only with research results in the earlier stage (1960s-1970s).This book presents the important and recent results of quantum statistical inference. It focuses on the asymptotic theory, which is one of the central issues of mathematical statistics and had not been investigated in quantum statistical inference until the early 1980s. It contains outstanding papers after Holevo's textbook, some of which are of great importance but are not available now.The reader is expected to have only elementary mathematical knowledge, and therefore much of the content will be accessible to graduate students as well as research workers in related fields. Introductions to quantum statistical inference have been specially written for the book. Asymptotic Theory of Quantum Statistical Inference: Selected Papers will give the reader a new insight into physics and statistical inference.

Book Mathematics of Neural Networks

Download or read book Mathematics of Neural Networks written by Stephen W. Ellacott and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of research papers comprises the proceedings of the first International Conference on Mathematics of Neural Networks and Applications (MANNA), which was held at Lady Margaret Hall, Oxford from July 3rd to 7th, 1995 and attended by 116 people. The meeting was strongly supported and, in addition to a stimulating academic programme, it featured a delightful venue, excellent food and accommo dation, a full social programme and fine weather - all of which made for a very enjoyable week. This was the first meeting with this title and it was run under the auspices of the Universities of Huddersfield and Brighton, with sponsorship from the US Air Force (European Office of Aerospace Research and Development) and the London Math ematical Society. This enabled a very interesting and wide-ranging conference pro gramme to be offered. We sincerely thank all these organisations, USAF-EOARD, LMS, and Universities of Huddersfield and Brighton for their invaluable support. The conference organisers were John Mason (Huddersfield) and Steve Ellacott (Brighton), supported by a programme committee consisting of Nigel Allinson (UMIST), Norman Biggs (London School of Economics), Chris Bishop (Aston), David Lowe (Aston), Patrick Parks (Oxford), John Taylor (King's College, Lon don) and Kevin Warwick (Reading). The local organiser from Huddersfield was Ros Hawkins, who took responsibility for much of the administration with great efficiency and energy. The Lady Margaret Hall organisation was led by their bursar, Jeanette Griffiths, who ensured that the week was very smoothly run.

Book Geometric Modeling in Probability and Statistics

Download or read book Geometric Modeling in Probability and Statistics written by Ovidiu Calin and published by Springer. This book was released on 2014-07-17 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader will understand a flourishing field of mathematics in which very few books have been written so far.

Book Statistical Optimization for Geometric Computation

Download or read book Statistical Optimization for Geometric Computation written by Kenichi Kanatani and published by Courier Corporation. This book was released on 2005-07-26 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text for graduate students discusses the mathematical foundations of statistical inference for building three-dimensional models from image and sensor data that contain noise--a task involving autonomous robots guided by video cameras and sensors. The text employs a theoretical accuracy for the optimization procedure, which maximizes the reliability of estimations based on noise data. The numerous mathematical prerequisites for developing the theories are explained systematically in separate chapters. These methods range from linear algebra, optimization, and geometry to a detailed statistical theory of geometric patterns, fitting estimates, and model selection. In addition, examples drawn from both synthetic and real data demonstrate the insufficiencies of conventional procedures and the improvements in accuracy that result from the use of optimal methods.

Book Principles of Statistical Inference

Download or read book Principles of Statistical Inference written by D. R. Cox and published by Cambridge University Press. This book was released on 2006-08-10 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this definitive book, D. R. Cox gives a comprehensive and balanced appraisal of statistical inference. He develops the key concepts, describing and comparing the main ideas and controversies over foundational issues that have been keenly argued for more than two-hundred years. Continuing a sixty-year career of major contributions to statistical thought, no one is better placed to give this much-needed account of the field. An appendix gives a more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications across the sciences and associated technologies. The mathematics is kept as elementary as feasible, though previous knowledge of statistics is assumed. The book will be valued by every user or student of statistics who is serious about understanding the uncertainty inherent in conclusions from statistical analyses.

Book Number Theoretic Methods in Statistics

Download or read book Number Theoretic Methods in Statistics written by Kai-Tai Fang and published by CRC Press. This book was released on 1993-12-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a survey of recent work on the application of number theory in statistics. The essence of number-theoretic methods is to find a set of points that are universally scattered over an s-dimensional unit cube. In certain circumstances this set can be used instead of random numbers in the Monte Carlo method. The idea can also be applied to other problems such as in experimental design. This book will illustrate the idea of number-theoretic methods and their application in statistics. The emphasis is on applying the methods to practical problems so only part-proofs of theorems are given.