EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Algebraic Analysis of Differential Equations

Download or read book Algebraic Analysis of Differential Equations written by T. Aoki and published by Springer Science & Business Media. This book was released on 2009-03-15 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains 23 articles on algebraic analysis of differential equations and related topics, most of which were presented as papers at the conference "Algebraic Analysis of Differential Equations – from Microlocal Analysis to Exponential Asymptotics" at Kyoto University in 2005. This volume is dedicated to Professor Takahiro Kawai, who is one of the creators of microlocal analysis and who introduced the technique of microlocal analysis into exponential asymptotics.

Book Differential Equations and Exact WKB Analysis

Download or read book Differential Equations and Exact WKB Analysis written by and published by . This book was released on 2008 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Toward the Exact WKB Analysis of Differential Equations  Linear or Non Linear

Download or read book Toward the Exact WKB Analysis of Differential Equations Linear or Non Linear written by Christopher J. Howls and published by 京都大学学術出版会. This book was released on 2000 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Algebraic Analysis of Singular Perturbation Theory

Download or read book Algebraic Analysis of Singular Perturbation Theory written by Takahiro Kawai and published by American Mathematical Soc.. This book was released on 2005 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of this book is the study of singular perturbations of ordinary differential equations, i.e., perturbations that represent solutions as asymptotic series rather than as analytic functions in a perturbation parameter. The main method used is the so-called WKB (Wentzel-Kramers-Brillouin) method, originally invented for the study of quantum-mechanical systems. The authors describe in detail the WKB method and its applications to the study of monodromy problems for Fuchsian differential equations and to the analysis of Painleve functions. This volume is suitable for graduate students and researchers interested in differential equations and special functions.

Book Analytic  Algebraic and Geometric Aspects of Differential Equations

Download or read book Analytic Algebraic and Geometric Aspects of Differential Equations written by Galina Filipuk and published by Birkhäuser. This book was released on 2017-06-23 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of invited lecture notes, survey papers and original research papers from the AAGADE school and conference held in Będlewo, Poland in September 2015. The contributions provide an overview of the current level of interaction between algebra, geometry and analysis and demonstrate the manifold aspects of the theory of ordinary and partial differential equations, while also pointing out the highly fruitful interrelations between those aspects. These interactions continue to yield new developments, not only in the theory of differential equations but also in several related areas of mathematics and physics such as differential geometry, representation theory, number theory and mathematical physics. The main goal of the volume is to introduce basic concepts, techniques, detailed and illustrative examples and theorems (in a manner suitable for non-specialists), and to present recent developments in the field, together with open problems for more advanced and experienced readers. It will be of interest to graduate students, early-career researchers and specialists in analysis, geometry, algebra and related areas, as well as anyone interested in learning new methods and techniques.

Book Resurgence  Physics and Numbers

Download or read book Resurgence Physics and Numbers written by Frédéric Fauvet and published by Springer. This book was released on 2017-11-17 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is issued from a conference around resurgent functions in Physics and multiple zetavalues, which was held at the Centro di Ricerca Matematica Ennio de Giorgi in Pisa, on May 18-22, 2015. This meeting originally stemmed from the impressive upsurge of interest for Jean Ecalle's alien calculus in Physics, in the last years – a trend that has considerably developed since then. The volume contains both original research papers and surveys, by leading experts in the field, reflecting the themes that were tackled at this event: Stokes phenomenon and resurgence, in various mathematical and physical contexts but also related constructions in algebraic combinatorics and results concerning numbers, specifically multiple zetavalues.

Book Asymptotic Analysis of Differential Equations

Download or read book Asymptotic Analysis of Differential Equations written by R. B. White and published by World Scientific. This book was released on 2010 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a useful volume in which a wide selection of asymptotic techniques is clearly presented in a form suitable for both applied mathematicians and Physicists who require an introduction to asymptotic techniques." --Book Jacket.

Book Nonstandard Finite Difference Models of Differential Equations

Download or read book Nonstandard Finite Difference Models of Differential Equations written by Ronald E. Mickens and published by World Scientific. This book was released on 1994 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of ?exact? and ?best? finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.

Book Complex Differential and Difference Equations

Download or read book Complex Differential and Difference Equations written by Galina Filipuk and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-11-18 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a balanced combination of longer survey articles and shorter, peer-reviewed research-level presentations on the topic of differential and difference equations on the complex domain, this edited volume presents an up-to-date overview of areas such as WKB analysis, summability, resurgence, formal solutions, integrability, and several algebraic aspects of differential and difference equations.

Book Linear Differential Equations in the Complex Domain

Download or read book Linear Differential Equations in the Complex Domain written by Yoshishige Haraoka and published by Springer Nature. This book was released on 2020-11-16 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed introduction to recent developments in the theory of linear differential systems and integrable total differential systems. Starting from the basic theory of linear ordinary differential equations and integrable systems, it proceeds to describe Katz theory and its applications, extending it to the case of several variables. In addition, connection problems, deformation theory, and the theory of integral representations are comprehensively covered. Complete proofs are given, offering the reader a precise account of the classical and modern theory of linear differential equations in the complex domain, including an exposition of Pfaffian systems and their monodromy problems. The prerequisites are a course in complex analysis and the basics of differential equations, topology and differential geometry. This book will be useful for graduate students, specialists in differential equations, and for non-specialists who want to use differential equations.

Book Structure of Solutions of Differential Equations

Download or read book Structure of Solutions of Differential Equations written by Takahiro Kawai and published by World Scientific. This book was released on 1996 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Formal And Analytic Solutions Of Differential Equations

Download or read book Formal And Analytic Solutions Of Differential Equations written by Galina Filipuk and published by World Scientific. This book was released on 2022-03-03 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides the reader with an overview of the actual state of research in ordinary and partial differential equations in the complex domain. Topics include summability and asymptotic study of both ordinary and partial differential equations, and also q-difference and differential-difference equations. This book will be of interest to researchers and students who wish to expand their knowledge of these fields.With the latest results and research developments and contributions from experts in their field, Formal and Analytic Solutions of Differential Equations provides a valuable contribution to methods, techniques, different mathematical tools, and study calculations.

Book Partial Differential Equations V

Download or read book Partial Differential Equations V written by M.V. Fedoryuk and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper we shall discuss the construction of formal short-wave asymp totic solutions of problems of mathematical physics. The topic is very broad. It can somewhat conveniently be divided into three parts: 1. Finding the short-wave asymptotics of a rather narrow class of problems, which admit a solution in an explicit form, via formulas that represent this solution. 2. Finding formal asymptotic solutions of equations that describe wave processes by basing them on some ansatz or other. We explain what 2 means. Giving an ansatz is knowing how to give a formula for the desired asymptotic solution in the form of a series or some expression containing a series, where the analytic nature of the terms of these series is indicated up to functions and coefficients that are undetermined at the first stage of consideration. The second stage is to determine these functions and coefficients using a direct substitution of the ansatz in the equation, the boundary conditions and the initial conditions. Sometimes it is necessary to use different ansiitze in different domains, and in the overlapping parts of these domains the formal asymptotic solutions must be asymptotically equivalent (the method of matched asymptotic expansions). The basis for success in the search for formal asymptotic solutions is a suitable choice of ansiitze. The study of the asymptotics of explicit solutions of special model problems allows us to "surmise" what the correct ansiitze are for the general solution.

Book Painlev   Transcendents

    Book Details:
  • Author : Athanassios S. Fokas
  • Publisher : American Mathematical Society
  • Release : 2023-11-20
  • ISBN : 1470475561
  • Pages : 570 pages

Download or read book Painlev Transcendents written by Athanassios S. Fokas and published by American Mathematical Society. This book was released on 2023-11-20 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the turn of the twentieth century, the French mathematician Paul Painlevé and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painlevé I–VI. Although these equations were initially obtained answering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painlevé transcendents (i.e., the solutions of the Painlevé equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points play a crucial role in the applications of these functions. It is shown in this book that even though the six Painlevé equations are nonlinear, it is still possible, using a new technique called the Riemann-Hilbert formalism, to obtain analogous explicit formulas for the Painlevé transcendents. This striking fact, apparently unknown to Painlevé and his contemporaries, is the key ingredient for the remarkable applicability of these “nonlinear special functions”. The book describes in detail the Riemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painlevé functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painlevé equations and related areas.

Book Microlocal Analysis and Complex Fourier Analysis

Download or read book Microlocal Analysis and Complex Fourier Analysis written by Keiko Fujita and published by World Scientific. This book was released on 2002 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of original papers on microlocal analysis, Fourier analysis in the complex domain, generalized functions and related topics. Most of the papers originate from the talks given at the conference OC Prospects of Generalized FunctionsOCO (in November, 2001 at RIMS, Kyoto). Reflecting the fact that the papers, except M Morimoto''s one, are dedicated to Mitsuo Morimoto, the subjects considered in this book are interdisciplinary, just as Morimoto''s works are. The historical backgrounds of the subjects are also discussed in depth in some contributions. Thus, this book should be valuable not only to the specialists in the fields, but also to those who are interested in the history of modern mathematics such as distributions and hyperfunctions."

Book Asymptotics in Dynamics  Geometry and PDEs  Generalized Borel Summation

Download or read book Asymptotics in Dynamics Geometry and PDEs Generalized Borel Summation written by Ovidiu Costin and published by Springer Science & Business Media. This book was released on 2012-02-21 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: These are the proceedings of a one-week international conference centered on asymptotic analysis and its applications. They contain major contributions dealing with: mathematical physics: PT symmetry, perturbative quantum field theory, WKB analysis, local dynamics: parabolic systems, small denominator questions, new aspects in mould calculus, with related combinatorial Hopf algebras and application to multizeta values, a new family of resurgent functions related to knot theory.

Book Virtual Turning Points

    Book Details:
  • Author : Naofumi Honda
  • Publisher : Springer
  • Release : 2015-07-07
  • ISBN : 4431557024
  • Pages : 133 pages

Download or read book Virtual Turning Points written by Naofumi Honda and published by Springer. This book was released on 2015-07-07 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: The discovery of a virtual turning point truly is a breakthrough in WKB analysis of higher order differential equations. This monograph expounds the core part of its theory together with its application to the analysis of higher order Painlevé equations of the Noumi–Yamada type and to the analysis of non-adiabatic transition probability problems in three levels. As M.V. Fedoryuk once lamented, global asymptotic analysis of higher order differential equations had been thought to be impossible to construct. In 1982, however, H.L. Berk, W.M. Nevins, and K.V. Roberts published a remarkable paper in the Journal of Mathematical Physics indicating that the traditional Stokes geometry cannot globally describe the Stokes phenomena of solutions of higher order equations; a new Stokes curve is necessary.