Download or read book Dichotomies and Stability in Nonautonomous Linear Systems written by Yu. A. Mitropolsky and published by CRC Press. This book was released on 2002-10-10 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear nonautonomous equations arise as mathematical models in mechanics, chemistry, and biology. The investigation of bounded solutions to systems of differential equations involves some important and challenging problems of perturbation theory for invariant toroidal manifolds. This monograph is a detailed study of the application of Lyapunov functions with variable sign, expressed in quadratic forms, to the solution of this problem. The authors explore the preservation of invariant tori of dynamic systems under perturbation. This volume is a classic contribution to the literature on stability theory and provides a useful source of reference for postgraduates and researchers.
Download or read book Stability of Nonautonomous Differential Equations written by Luis Barreira and published by Springer. This book was released on 2007-09-26 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers the stability of nonautonomous differential equations in Banach spaces in the presence of nonuniform hyperbolicity. Topics under discussion include the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, and the construction and regularity of topological conjugacies. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.
Download or read book Generalized Ordinary Differential Equations in Abstract Spaces and Applications written by Everaldo M. Bonotto and published by John Wiley & Sons. This book was released on 2021-09-15 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and Applications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.
Download or read book Geometric Theory of Discrete Nonautonomous Dynamical Systems written by Christian Pötzsche and published by Springer Science & Business Media. This book was released on 2010-09-17 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes).
Download or read book Evolution Equations Semigroups and Functional Analysis written by Alfredo Lorenzi and published by Birkhäuser. This book was released on 2012-12-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brunello Terreni (1953-2000) was a researcher and teacher with vision and dedication. The present volume is dedicated to the memory of Brunello Terreni. His mathematical interests are reflected in 20 expository articles written by distinguished mathematicians. The unifying theme of the articles is "evolution equations and functional analysis", which is presented in various and diverse forms: parabolic equations, semigroups, stochastic evolution, optimal control, existence, uniqueness and regularity of solutions, inverse problems as well as applications. Contributors: P. Acquistapace, V. Barbu, A. Briani, L. Boccardo, P. Colli Franzone, G. Da Prato, D. Donatelli, A. Favini, M. Fuhrmann, M. Grasselli, R. Illner, H. Koch, R. Labbas, H. Lange, I. Lasiecka, A. Lorenzi, A. Lunardi, P. Marcati, R. Nagel, G. Nickel, V. Pata, M. M. Porzio, B. Ruf, G. Savaré, R. Schnaubelt, E. Sinestrari, H. Tanabe, H. Teismann, E. Terraneo, R. Triggiani, A. Yagi.
Download or read book Evolution Equations Semigroups and Functional Analysis written by Brunello Terreni and published by Springer Science & Business Media. This book was released on 2002 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brunello Terreni (1953-2000) was a researcher and teacher with vision and dedication. The present volume is dedicated to the memory of Brunello Terreni. His mathematical interests are reflected in 20 expository articles written by distinguished mathematicians. The unifying theme of the articles is "evolution equations and functional analysis", which is presented in various and diverse forms: parabolic equations, semigroups, stochastic evolution, optimal control, existence, uniqueness and regularity of solutions, inverse problems as well as applications. Contributors: P. Acquistapace, V. Barbu, A. Briani, L. Boccardo, P. Colli Franzone, G. Da Prato, D. Donatelli, A. Favini, M. Fuhrmann, M. Grasselli, R. Illner, H. Koch, R. Labbas, H. Lange, I. Lasiecka, A. Lorenzi, A. Lunardi, P. Marcati, R. Nagel, G. Nickel, V. Pata, M. M. Porzio, B. Ruf, G. Savaré, R. Schnaubelt, E. Sinestrari, H. Tanabe, H. Teismann, E. Terraneo, R. Triggiani, A. Yagi
Download or read book Linear Systems Exponential Dichotomy and Structure of Sets of Hyperbolic Points written by Zhensheng Lin and published by World Scientific. This book was released on 2000 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historically, the theory of stability is based on linear differential systems, which are simple and important systems in ordinary differential equations. The research on differential equations and on the theory of stability will, to a certain extent, be influenced by the research on linear differential systems. For differential linear equation systems, there are still many historical open questions attracting mathematicians. This book deals with the theory of linear differential systems developed around the notion of exponential dichotomies. The authors advance the theory of stability through their research in this field. Several new important results on linear differential systems are presented. They concern exponential dichotomy and the structure of the sets of hyperbolic points. The book has five chapters: Chapter 1 introduces some necessary classical results on the linear differential systems, and the following chapters discuss exponential dichotomy, spectra of almost periodic linear systems, the Floquet theory for quasi periodic linear systems and the structure of sets of hyperbolic points. This book is a very useful reference in the area of the stability theory of ordinary differential equations and the theory of dynamic systems.
Download or read book Mathematical Reviews written by and published by . This book was released on 2007 with total page 1164 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nonautonomous Bifurcation Theory written by Vasso Anagnostopoulou and published by Springer Nature. This book was released on 2023-05-31 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bifurcation theory is a major topic in dynamical systems theory with profound applications. However, in contrast to autonomous dynamical systems, it is not clear what a bifurcation of a nonautonomous dynamical system actually is, and so far, various different approaches to describe qualitative changes have been suggested in the literature. The aim of this book is to provide a concise survey of the area and equip the reader with suitable tools to tackle nonautonomous problems. A review, discussion and comparison of several concepts of bifurcation is provided, and these are formulated in a unified notation and illustrated by means of comprehensible examples. Additionally, certain relevant tools needed in a corresponding analysis are presented.
Download or read book Topological Dynamics of Random Dynamical Systems written by Nguyen Dinh Cong and published by Oxford University Press. This book was released on 1997 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first systematic treatment of the theory of topological dynamics of random dynamical systems. A relatively new field, the theory of random dynamical systems unites and develops the classical deterministic theory of dynamical systems and probability theory, finding numerous applications in disciplines ranging from physics and biology to engineering, finance and economics. This book presents in detail the solutions to the most fundamental problems of topological dynamics: linearization of nonlinear smooth systems, classification, and structural stability of linear hyperbolic systems. Employing the tools and methods of algebraic ergodic theory, the theory presented in the book has surprisingly beautiful results showing the richness of random dynamical systems as well as giving a gentle generalization of the classical deterministic theory.
Download or read book Numerical Solution of Boundary Value Problems for Ordinary Differential Equations written by Uri M. Ascher and published by SIAM. This book was released on 1994-12-01 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
Download or read book Issues in General and Specialized Mathematics Research 2013 Edition written by and published by ScholarlyEditions. This book was released on 2013-05-01 with total page 1182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in General and Specialized Mathematics Research: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about General Mathematics. The editors have built Issues in General and Specialized Mathematics Research: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about General Mathematics in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General and Specialized Mathematics Research: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Download or read book Nonautonomous Dynamical Systems written by Peter E. Kloeden and published by American Mathematical Soc.. This book was released on 2011-08-17 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.
Download or read book Evolution Semigroups in Dynamical Systems and Differential Equations written by Carmen Chicone and published by American Mathematical Soc.. This book was released on 1999 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of the book is the spectral theory for evolution operators and evolution semigroups, a subject tracing its origins to the classical results of J. Mather on hyperbolic dynamical systems and J. Howland on nonautonomous Cauchy problems. The authors use a wide range of methods and offer a unique presentation. The authors give a unifying approach for a study of infinite-dimensional nonautonomous problems, which is based on the consistent use of evolution semigroups. This unifying idea connects various questions in stability of semigroups, infinite-dimensional hyperbolic linear skew-product flows, translation Banach algebras, transfer operators, stability radii in control theory, Lyapunov exponents, magneto-dynamics and hydro-dynamics. Thus the book is much broader in scope than existing books on asymptotic behavior of semigroups. Included is a solid collection of examples from different areas of analysis, PDEs, and dynamical systems. This is the first monograph where the spectral theory of infinite dimensional linear skew-product flows is described together with its connection to the multiplicative ergodic theorem; the same technique is used to study evolution semigroups, kinematic dynamos, and Ruelle operators; the theory of stability radii, an important concept in control theory, is also presented. Examples are included and non-traditional applications are provided.
Download or read book Difference Equations Discrete Dynamical Systems and Applications written by Sorin Olaru and published by Springer Nature. This book was released on with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nonuniform Hyperbolicity written by Luis Barreira and published by . This book was released on 2014-02-19 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained, comprehensive account of modern smooth ergodic theory, the mathematical foundation of deterministic chaos.
Download or read book Issues in Calculus Mathematical Analysis and Nonlinear Research 2011 Edition written by and published by ScholarlyEditions. This book was released on 2012-01-09 with total page 1136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Calculus, Mathematical Analysis, and Nonlinear Research. The editors have built Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Calculus, Mathematical Analysis, and Nonlinear Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.