EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Developments in Statistical Modelling

Download or read book Developments in Statistical Modelling written by Jochen Einbeck and published by Springer Nature. This book was released on with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Statistical Models

    Book Details:
  • Author : A. C. Davison
  • Publisher : Cambridge University Press
  • Release : 2008-06-30
  • ISBN : 9780521734493
  • Pages : 0 pages

Download or read book Statistical Models written by A. C. Davison and published by Cambridge University Press. This book was released on 2008-06-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Models and likelihood are the backbone of modern statistics and data analysis. The coverage is unrivaled, with sections on survival analysis, missing data, Markov chains, Markov random fields, point processes, graphical models, simulation and Markov chain Monte Carlo, estimating functions, asymptotic approximations, local likelihood and spline regressions as well as on more standard topics. Anthony Davison blends theory and practice to provide an integrated text for advanced undergraduate and graduate students, researchers and practicioners. Its comprehensive coverage makes this the standard text and reference in the subject.

Book Explanatory Model Analysis

Download or read book Explanatory Model Analysis written by Przemyslaw Biecek and published by CRC Press. This book was released on 2021-02-15 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.

Book Statistical Models Based on Counting Processes

Download or read book Statistical Models Based on Counting Processes written by Per K. Andersen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 779 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern survival analysis and more general event history analysis may be effectively handled within the mathematical framework of counting processes. This book presents this theory, which has been the subject of intense research activity over the past 15 years. The exposition of the theory is integrated with careful presentation of many practical examples, drawn almost exclusively from the authors'own experience, with detailed numerical and graphical illustrations. Although Statistical Models Based on Counting Processes may be viewed as a research monograph for mathematical statisticians and biostatisticians, almost all the methods are given in concrete detail for use in practice by other mathematically oriented researchers studying event histories (demographers, econometricians, epidemiologists, actuarial mathematicians, reliability engineers and biologists). Much of the material has so far only been available in the journal literature (if at all), and so a wide variety of researchers will find this an invaluable survey of the subject.

Book A Survey of Statistical Network Models

Download or read book A Survey of Statistical Network Models written by Anna Goldenberg and published by Now Publishers Inc. This book was released on 2010 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.

Book Statistical Modeling for Degradation Data

Download or read book Statistical Modeling for Degradation Data written by Ding-Geng (Din) Chen and published by Springer. This book was released on 2017-08-31 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.

Book Clinical Prediction Models

Download or read book Clinical Prediction Models written by Ewout W. Steyerberg and published by Springer. This book was released on 2019-07-22 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this volume provides insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome prediction, but a sensible strategy is needed for model development, validation, and updating, such that prediction models can better support medical practice. There is an increasing need for personalized evidence-based medicine that uses an individualized approach to medical decision-making. In this Big Data era, there is expanded access to large volumes of routinely collected data and an increased number of applications for prediction models, such as targeted early detection of disease and individualized approaches to diagnostic testing and treatment. Clinical Prediction Models presents a practical checklist that needs to be considered for development of a valid prediction model. Steps include preliminary considerations such as dealing with missing values; coding of predictors; selection of main effects and interactions for a multivariable model; estimation of model parameters with shrinkage methods and incorporation of external data; evaluation of performance and usefulness; internal validation; and presentation formatting. The text also addresses common issues that make prediction models suboptimal, such as small sample sizes, exaggerated claims, and poor generalizability. The text is primarily intended for clinical epidemiologists and biostatisticians. Including many case studies and publicly available R code and data sets, the book is also appropriate as a textbook for a graduate course on predictive modeling in diagnosis and prognosis. While practical in nature, the book also provides a philosophical perspective on data analysis in medicine that goes beyond predictive modeling. Updates to this new and expanded edition include: • A discussion of Big Data and its implications for the design of prediction models • Machine learning issues • More simulations with missing ‘y’ values • Extended discussion on between-cohort heterogeneity • Description of ShinyApp • Updated LASSO illustration • New case studies

Book Statistical Modelling in GLIM

Download or read book Statistical Modelling in GLIM written by Murray A. Aitkin and published by Oxford University Press. This book was released on 1989 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of data by statistical modelling is becoming increasingly important. This book presents both the theory of statistical modelling with generalized linear models and the application of the theory to practical problems using the widely available package GLIM. The authors have takenpains to integrate the theory with many practical examples which illustrate the value of interactive statistical modelling. Throughout the book theoretical issues of formulating and simplifying models are discussed, as are problems of validating the models by the detection of outliers and influential observations. The book arises from short courses given at the University of Lancaster's Centre for Applied Statistics, with an emphasis on practical programming in GLIM and numerous examples. A wide range of case studies is provided, using the normal, binomial, Poisson, multinomial, gamma, exponential andWeibull distributions. A feature of the book is a detailed discussion of survival analysis. Statisticians working in a wide range of fields, including biomedical and social sciences, will find this book an invaluable desktop companion to aid their statistical modelling. It will also provide a text for students meeting the ideas of statistical modelling for the first time.

Book Advances in GLIM and Statistical Modelling

Download or read book Advances in GLIM and Statistical Modelling written by Ludwig Fahrmeir and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the published Proceedings of the joint meeting of GUM92 and the 7th International Workshop on Statistical Modelling, held in Munich, Germany from 13 to 17 July 1992. The meeting aimed to bring together researchers interested in the development and applications of generalized linear modelling in GUM and those interested in statistical modelling in its widest sense. This joint meeting built upon the success of previous workshops and GUM conferences. Previous GUM conferences were held in London and Lancaster, and a joint GUM Conference/4th Modelling Workshop was held in Trento. (The Proceedings of previous GUM conferences/Statistical Modelling Workshops are available as numbers 14 , 32 and 57 of the Springer Verlag series of Lecture Notes in Statistics). Workshops have been organized in Innsbruck, Perugia, Vienna, Toulouse and Utrecht. (Proceedings of the Toulouse Workshop appear as numbers 3 and 4 of volume 13 of the journal Computational Statistics and Data Analysis). Much statistical modelling is carried out using GUM, as is apparent from many of the papers in these Proceedings. Thus the Programme Committee were also keen on encouraging papers which addressed problems which are not only of practical importance but which are also relevant to GUM or other software development. The Programme Committee requested both theoretical and applied papers. Thus there are papers in a wide range of practical areas, such as ecology, breast cancer remission and diabetes mortality, banking and insurance, quality control, social mobility, organizational behaviour.

Book The Challenge of Developing Statistical Literacy  Reasoning and Thinking

Download or read book The Challenge of Developing Statistical Literacy Reasoning and Thinking written by Dani Ben-Zvi and published by Springer Science & Business Media. This book was released on 2006-02-23 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unique in that it collects, presents, and synthesizes cutting edge research on different aspects of statistical reasoning and applies this research to the teaching of statistics to students at all educational levels, this volume will prove of great value to mathematics and statistics education researchers, statistics educators, statisticians, cognitive psychologists, mathematics teachers, mathematics and statistics curriculum developers, and quantitative literacy experts in education and government.

Book Applied Linear Statistical Models

Download or read book Applied Linear Statistical Models written by Michael H. Kutner and published by McGraw-Hill/Irwin. This book was released on 2005 with total page 1396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.

Book The Two Cultures

    Book Details:
  • Author : C. P. Snow
  • Publisher : Cambridge University Press
  • Release : 2012-03-26
  • ISBN : 1107606144
  • Pages : 193 pages

Download or read book The Two Cultures written by C. P. Snow and published by Cambridge University Press. This book was released on 2012-03-26 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of science and technology and future of education and research are just some of the subjects discussed here.

Book New Developments in Statistical Modeling  Inference and Application

Download or read book New Developments in Statistical Modeling Inference and Application written by Zhezhen Jin and published by Springer. This book was released on 2016-10-28 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this volume represent the most timely and advanced contributions to the 2014 Joint Applied Statistics Symposium of the International Chinese Statistical Association (ICSA) and the Korean International Statistical Society (KISS), held in Portland, Oregon. The contributions cover new developments in statistical modeling and clinical research: including model development, model checking, and innovative clinical trial design and analysis. Each paper was peer-reviewed by at least two referees and also by an editor. The conference was attended by over 400 participants from academia, industry, and government agencies around the world, including from North America, Asia, and Europe. It offered 3 keynote speeches, 7 short courses, 76 parallel scientific sessions, student paper sessions, and social events.

Book An Introduction to Statistical Modelling

Download or read book An Introduction to Statistical Modelling written by W. J. Krzanowski and published by Wiley. This book was released on 2010-06-28 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statisticians rely heavily on making models of 'causal situations' in order to fully explain and predict events. Modelling therefore plays a vital part in all applications of statistics and is a component of most undergraduate programmes. 'An Introduction to Statistical Modelling' provides a single reference with an applied slant that caters for all three years of a degree course. The book concentrates on core issues and only the most essential mathematical justifications are given in detail. Attention is firmly focused on the statistical aspects of the techniques, in this lively, practical approach.

Book Multivariate Statistical Modelling Based on Generalized Linear Models

Download or read book Multivariate Statistical Modelling Based on Generalized Linear Models written by Ludwig Fahrmeir and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concerned with the use of generalised linear models for univariate and multivariate regression analysis, this is a detailed introductory survey of the subject, based on the analysis of real data drawn from a variety of subjects such as the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account.

Book Introduction to Statistical Modelling

Download or read book Introduction to Statistical Modelling written by Annette J. Dobson and published by Springer. This book was released on 2013-11-11 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about generalized linear models as described by NeIder and Wedderburn (1972). This approach provides a unified theoretical and computational framework for the most commonly used statistical methods: regression, analysis of variance and covariance, logistic regression, log-linear models for contingency tables and several more specialized techniques. More advanced expositions of the subject are given by McCullagh and NeIder (1983) and Andersen (1980). The emphasis is on the use of statistical models to investigate substantive questions rather than to produce mathematical descriptions of the data. Therefore parameter estimation and hypothesis testing are stressed. I have assumed that the reader is familiar with the most commonly used statistical concepts and methods and has some basic knowledge of calculus and matrix algebra. Short numerical examples are used to illustrate the main points. In writing this book I have been helped greatly by the comments and criticism of my students and colleagues, especially Anne Young. However, the choice of material, and the obscurities and errors are my responsibility and I apologize to the reader for any irritation caused by them. For typing the manuscript under difficult conditions I am grateful to Anne McKim, Jan Garnsey, Cath Claydon and Julie Latimer.

Book Statistical Modeling in Biomedical Research

Download or read book Statistical Modeling in Biomedical Research written by Yichuan Zhao and published by Springer Nature. This book was released on 2020-03-19 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited collection discusses the emerging topics in statistical modeling for biomedical research. Leading experts in the frontiers of biostatistics and biomedical research discuss the statistical procedures, useful methods, and their novel applications in biostatistics research. Interdisciplinary in scope, the volume as a whole reflects the latest advances in statistical modeling in biomedical research, identifies impactful new directions, and seeks to drive the field forward. It also fosters the interaction of scholars in the arena, offering great opportunities to stimulate further collaborations. This book will appeal to industry data scientists and statisticians, researchers, and graduate students in biostatistics and biomedical science. It covers topics in: Next generation sequence data analysis Deep learning, precision medicine, and their applications Large scale data analysis and its applications Biomedical research and modeling Survival analysis with complex data structure and its applications.