EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development of Metal organic Framework Thin Films and Membranes for Low energy Gas Separation

Download or read book Development of Metal organic Framework Thin Films and Membranes for Low energy Gas Separation written by Michael McCarthy and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-organic frameworks (MOFs) are hybrid organic-inorganic micro- or mesoporous materials that exhibit regular crystalline lattices with rigid pore structures. Chemical functionalization of the organic linkers in the structures of MOFs affords facile control over pore size and physical properties, making MOFs attractive materials for application in gas-separating membranes. A wealth of reports exist discussing the synthesis of MOF structures, however relatively few reports exist discussing MOF membranes. This disparity owes to challenges associated with fabricating films of hybrid materials, including poor substrate-film interactions, moisture sensitivity, and thermal instability. Since even nanometer scale cracks and defects can affect the performance of a membrane for gas separation, these challenges are particularly acute for MOF membranes. The focus of this work is the development of novel methods for MOF film and membrane fabrication with a view to overcoming these challenges. The MOF film production methods discussed herein include in situ synthesis using ligand-modified or metal-modified supports and rapid thermal deposition (RTD).

Book Membranes For Gas Separations

Download or read book Membranes For Gas Separations written by Moises A Carreon and published by World Scientific. This book was released on 2017-08-11 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at illustrating several examples of different membrane compositions ranging from inorganic, polymeric, metallic, metal organic framework, and composite which have been successfully deployed to separate industrially relevant gas mixtures including hydrogen, nitrogen, methane, carbon dioxide, olefins/parafins among others. Each book chapter highlights some of the current and key fundamental and technological challenges for these membranes that must be overcome in order to envision its application at industrial level.

Book Metal Organic Frameworks

    Book Details:
  • Author : David Farrusseng
  • Publisher : John Wiley & Sons
  • Release : 2011-09-19
  • ISBN : 3527635866
  • Pages : 415 pages

Download or read book Metal Organic Frameworks written by David Farrusseng and published by John Wiley & Sons. This book was released on 2011-09-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: An international and interdisciplinary team of leading experts from both academia and industry report on the wide range of hot applications for MOFs, discussing both the advantages and limits of the material. The resulting overview covers everything from catalysis, H2 and CH4 storage and gas purification to drug delivery and sensors. From the Contents: - Design of Porous Coordination Polymers/Metal-Organic Frameworks: Past, Present and Future - Design of Functional Metal-Organic Frameworks by Post-Synthetic Modification - Thermodynamic Methods for Prediction of Gas Separation in Flexible Frameworks - Separation and purification of gases by MOFs - Opportunities for MOFs in CO2 capture from flue gases, natural gas and syngas by adsorption - Manufacture of MOF thin films on structured supports for separation and catalysis - Research status of Metal-Organic Frameworks for on-board cryo-adsorptive hydrogen storage applications - Separation of xylene isomers - Metal-Organic Frameworks as Catalysts for Organic Reactions - Biomedical applications of Metal Organic Frameworks - Metal Organic Frameworks for Biomedical Imaging - Luminescent Metal-Organic Frameworks - Deposition of thin films for sensor applications - Industrial MOF Synthesis - MOF shaping and immobilisation A must-have for every scientist in the field.

Book Gas Separation Membranes

Download or read book Gas Separation Membranes written by Ahmad Fauzi Ismail and published by Springer. This book was released on 2015-04-28 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the tremendous progress that has been made in the development of gas separation membranes based both on inorganic and polymeric materials. Materials discussed include polymer inclusion membranes (PIMs), metal organic frameworks (MOFs), carbon based materials, zeolites, as well as other materials, and mixed matrix membranes (MMMs) in which the above novel materials are incorporated. This broad survey of gas membranes covers material, theory, modeling, preparation, characterization (for example, by AFM, IR, XRD, ESR, Positron annihilation spectroscopy), tailoring of membranes, membrane module and system design, and applications. The book is concluded with some perspectives about the future direction of the field.

Book Metal organic Framework Membranes For Molecular Gas Separations

Download or read book Metal organic Framework Membranes For Molecular Gas Separations written by Moises A Carreon and published by World Scientific. This book was released on 2020-07-30 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique compendium describes research progress on metal-organic framework (MOF) membranes for different relevant industrial gas separations. Specifically, the book focuses mainly on gas separations which are important in flue gas treatment, natural gas purification, hydrogen purification, and nuclear reprocessing. The advantages of using MOFs in mixed matrix membranes are discussed. Some of the pressing challenges in the field, and strategies to potentially overcome them are also distinctly outlined.This volume is a useful reference materials for professionals, academics, researchers and postgraduate students in chemical engineering and materials engineering.

Book Nanocomposite Membranes for Gas Separation

Download or read book Nanocomposite Membranes for Gas Separation written by Pei Sean Goh and published by Elsevier. This book was released on 2020-07-07 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of a new class of nanocomposite membranes has served as one of the most prominent strategies to address the intrinsic limitations of conventionally used polymeric and inorganic membranes. Nanocomposite membranes consist of nanosized inorganic nanomaterials that are incorporated into the structure of continuous polymer matrices. Owing to the exceptional properties exhibited by the nanomaterials, the resultant nanocomposite membranes demonstrate higher selectivity and permeability that surpass the Robeson upper boundary limit. Nanocomposite Membranes for Gas Separation provides a comprehensive review of the advances made in the development and application of gas separation nanocomposite membranes. In particular, the book covers the focuses on the fabrication, modification, characterization and applications of nanocomposite membranes for gas separation. It is an important reference source both for materials scientists, environmental engineers and chemical engineers who are looking to understand how nanocomposite membranes are being used to create better techniques for gas separation. Provides detailed insights in the fabrication, modification, characterization and applications of nanocomposite membranes for gas separation Shows how nanotechnology is being used to address current limitations of the development of polymeric and inorganic membranes for gas separation, including low separation performance in terms of permeability and selectivity Explores the potential of nanocomposite membranes to help create more effective gas separation techniques

Book Metal Organic Frameworks  MOFs  for Environmental Applications

Download or read book Metal Organic Frameworks MOFs for Environmental Applications written by Sujit K. Ghosh and published by Elsevier. This book was released on 2019-06-07 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-Organic Frameworks for Environmental Applications examines this important topic, looking at potential materials and methods for the remediation of pressing pollution issues, such as heavy-metal contaminants in water streams, radioactive waste disposal, marine oil-spillage, the treatment of textile and dye industry effluents, the clean-up of trace amounts of explosives in land and water, and many other topics. This survey of the cutting-edge research and technology of MOFs is an invaluable resource for researchers working in inorganic chemistry and materials science, but it is also ideal for graduate students studying MOFs and their applications. Examines the applications of metal-organic frameworks for the remediation of environmental pollutants Features leading experts who research the applications of MOFs from around the world, including contributions from the United States, India and China Explores possible solutions to some of today’s most pressing environmental challenges, such as heavy-metal contamination in bodies of water, oil spills and clean-up of explosives hidden in land and water Provides an excellent reference for researchers and graduate students studying in the areas of inorganic chemistry, materials chemistry and environmental science

Book Mixed Matrix Membranes

Download or read book Mixed Matrix Membranes written by Clara Casado-Coterillo and published by MDPI. This book was released on 2019-12-16 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed matrix membranes (MMMs) have attracted a large amount of interest in research laboratories worldwide in recent decades, motivated by the gap between a growing interest in developing novel mixed matrix membranes by various research groups and the lack of large-scale implementation. This Special Issue contains six publications dealing with the current opportunities and challenges of mixed matrix membranes development and applications to solve environmental and health challenges of the society of 21st century.

Book Polymer Metal Organic Framework  MOF  Mixed matrix Membranes for Gas Separation Applications

Download or read book Polymer Metal Organic Framework MOF Mixed matrix Membranes for Gas Separation Applications written by Qihui Qian and published by . This book was released on 2021 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-organic frameworks (MOFs) represent the largest known class of porous crystalline materials ever synthesized. Their narrow pore windows and nearly unlimited structural and chemical features have made these materials of significant interest for membrane-based gas separations. Mixed-matrix membranes (MMMs) formed by incorporating MOF particles into polymers have attracted significant attention because these composite systems can potentially surpass the separation performance of pure polymers alone. However, performance improvements are often unrealized because of poor interfacial compatibility between the MOF and the polymer, which results in interfacial defects. From a practical perspective, strategies are needed to address these defects so that MMMs can be deployed in real-world separation processes. From a fundamental perspective, strategies are needed to reliably form defect-free MMMs so that transport models can be applied to estimate pure-MOF property sets, thereby enabling the development of robust structure-property relationships. To address these interfacial challenges, this thesis describes a developed method to surface functionalize MOFs with nanoscopic shells of covalently tethered oligomers through various imidization routes. Upon embedding these post-synthetically modified (PSM) MOFs in high molecular weight polymers, defect-free MMMs were formed, revealing synergistic improvements in both permeability and selectivity due to enhanced interfacial compatibility. Additionally, pure-MOF permeabilities for various gases were predicted by the Maxwell Model. The PSM technique developed initially was further developed to address its generalizability to various MOFs, oligomer surface reactions, reaction conditions, and polymer compositions, providing robust guiding principles to form MMMs with excellent polymer-MOF interfacial compatibility. Finally, the potential of a novel MOF, MFU-4, as a filler in MMMs for CO2/H2S/CH4 separation was studied by dispersing the MOF in high molecular weight polymers. To validate a CO2-driven gate-opening mechanism proposed by other researchers earlier, a systematic temperature study of diffusion, sorption, and permeation through an MFU-4/polyimide MMM was carried out. Separation performance of the MMM did improve with decreasing temperatures, however, no obvious evidence of the gate-opening mechanism was found under the conditions tested.

Book Metal Organic Frameworks as Heterogeneous Catalysts

Download or read book Metal Organic Frameworks as Heterogeneous Catalysts written by Francesc X. Llabrés i Xamena and published by Royal Society of Chemistry. This book was released on 2013-07-01 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the latest research and discovery in the use of MOFs in catalysis, highlighting the extent to which these materials have been embraced by the community.

Book Synthesis and Characterization of Films and Membranes of Metal Organic Framework  MOF  for Gas Separation Applications

Download or read book Synthesis and Characterization of Films and Membranes of Metal Organic Framework MOF for Gas Separation Applications written by Miral Naresh Shah and published by . This book was released on 2013 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-Organic Frameworks (MOFs) are nanoporous framework materials with tunable pore size and functionality, and hence attractive for gas separation membrane applications. Zeolitic Imidazolate Frameworks (ZIFs), a subclass of MOFs, are known for their high thermal and chemical stability. ZIF-8 has demonstrated potential to kinetically separate propane/propene in powder and membrane form. ZIF-8 membranes propane-propene separation performance is superior in comparison to polymer, mixed matrix and carbon membranes. The overarching theme of my research is to address challenges that hinder fabrication of MOF membranes on a commercial scale and in a reproducible and scalable manner. 1. Current approaches, are specific to a given ZIF, a general synthesis route is not available. Use of multiple steps for surface modification or seeding causes reproducibility and scalability issues. 2. Conventional fabrication techniques are batch processes, thereby limiting their commercialization. Here we demonstrate two new approaches that can potentially address these challenges. First, we report one step in situ synthesis of ZIF-8 membranes on more commonly used porous [alpha]-alumina supports. By incorporating sodium formate in the in situ growth solution, well intergrown ZIF-8 membranes were synthesized on unmodified supports. The mechanism by which sodium formate promotes heterogeneous nucleation was investigated. Sodium formate reacts with zinc source to form zinc oxide layer, which in turn promotes heterogeneous nucleation. Sodium formate promotes heterogeneous nucleation in other ZIF systems as well, leading to ZIF-7, Zn(Im)2 (ZIF-61 analogue), ZIF-90, and SIM-1 films. Thus one step in situ growth using sodium formate provides a simplified, reproducible and potentially general route for ZIF film fabrication. One step in situ route, although advantageous; is still conventional in nature and batch process with long synthesis time. This limits commercialization, due to scalability and manufacturing cost issues. Taking advantage of coordination chemistry of MOFs and using temperature as driving force, continuous well-intergrown membranes of HKUST-1 and ZIF-8 in relatively short time (15 min) using Rapid Thermal Deposition (RTD). With minimum precursor consumption and simplified synthesis protocol, RTD provides potential for a continuous, scalable, reproducible and commercializable route for MOF membrane fabrication. RTD-prepared MOF membranes show improved separation performances, indicating improved microstructure. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148212

Book Synthesis and Characterization of Iso reticular Metal organic Frameworks and Their Applications for Gas Separations

Download or read book Synthesis and Characterization of Iso reticular Metal organic Frameworks and Their Applications for Gas Separations written by Yeonshick Yoo and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoporous metal-organic frameworks (MOFs) have attracted tremendous interest due to their potential applications in gas-storage, gas separation, gas sensing, and catalysis. MOFs consist of metal-oxygen polyhedera interconnected with a variety of organic linker molecules, resulting in tailored nanoporous materials. With a judicious choice of organic linker groups, it is possible to fine-tune size, shape, and chemical functionality of the cavities and the internal surfaces. This unique structural feature offers unprecedented opportunities in small-molecule separations as well as chiral separations and catalysis. Prototypical iso-reticular metal-organic frameworks (IRMOFs) have been extensively studied among MOFs due to the simplicity of their synthesis and the variety of their potential applications. IRMOFs are a specific series of metal-organic frameworks developed by Yaghi and his coworkers. All IRMOFs are composed of oxygen-centered Zn4O tetrahedra interconnected with dicarboxylate linkers, forming a cubic type three dimensional (3D) porous network with high surface area. Despite a great deal of research in the synthesis and characterization of MOFs, there have been relatively few reports on the development of their applications, such as the fabrication of MOF thin films and membranes for gas separations. This is mainly due to the challenges associated with relatively difficult heterogeneous nucleation (seeding) and growth of MOFs on supports, and crack formation compared to their counterparts. Thin films and membranes of MOFs have great potentials for applications in membranebased gas separations, reactors, chemical sensors, and nonlinear optical devices. In this dissertation, the fabrication of IRMOF-1 membrane using a novel seeding method and its gas diffusion properties has been demonstrated. Introduction of the new seeding method for MOFs using microwaves resulted in well inter-grown IRMOF membranes showing Knudsen type transport of small gases through its pore. The heteroepitaxial growth of one IRMOF on another produced multi-layered IRMOF membranes. In addition, postsynthetic modification (PSM) of IRMOFs created functionalized membranes with enhanced stability against water as well as reduced crack formation during membrane fabrication. Lastly, hierarchical IRMOFs with improved CO2 adsorption properties were synthesized via PSM with cyanuric chloride.

Book Introduction to Reticular Chemistry

Download or read book Introduction to Reticular Chemistry written by Omar M. Yaghi and published by John Wiley & Sons. This book was released on 2019-03-22 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to the chemistry and design principles behind important metal-organic frameworks and related porous materials Reticular chemistry has been applied to synthesize new classes of porous materials that are successfully used for myraid applications in areas such as gas separation, catalysis, energy, and electronics. Introduction to Reticular Chemistry gives an unique overview of the principles of the chemistry behind metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolitic imidazolate frameworks (ZIFs). Written by one of the pioneers in the field, this book covers all important aspects of reticular chemistry, including design and synthesis, properties and characterization, as well as current and future applications Designed to be an accessible resource, the book is written in an easy-to-understand style. It includes an extensive bibliography, and offers figures and videos of crystal structures that are available as an electronic supplement. Introduction to Reticular Chemistry: -Describes the underlying principles and design elements for the synthesis of important metal-organic frameworks (MOFs) and related materials -Discusses both real-life and future applications in various fields, such as clean energy and water adsorption -Offers all graphic material on a companion website -Provides first-hand knowledge by Omar Yaghi, one of the pioneers in the field, and his team. Aimed at graduate students in chemistry, structural chemists, inorganic chemists, organic chemists, catalytic chemists, and others, Introduction to Reticular Chemistry is a groundbreaking book that explores the chemistry principles and applications of MOFs, COFs, and ZIFs.

Book Multilayer Thin Films

Download or read book Multilayer Thin Films written by Sukumar Basu and published by BoD – Books on Demand. This book was released on 2020-01-15 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, "Multilayer Thin Films-Versatile Applications for Materials Engineering", includes thirteen chapters related to the preparations, characterizations, and applications in the modern research of materials engineering. The evaluation of nanomaterials in the form of different shapes, sizes, and volumes needed for utilization in different kinds of gadgets and devices. Since the recently developed two-dimensional carbon materials are proving to be immensely important for new configurations in the miniature scale in the modern technology, it is imperative to innovate various atomic and molecular arrangements for the modifications of structural properties. Of late, graphene and graphene-related derivatives have been proven as the most versatile two-dimensional nanomaterials with superb mechanical, electrical, electronic, optical, and magnetic properties. To understand the in-depth technology, an effort has been made to explain the basics of nano dimensional materials. The importance of nano particles in various aspects of nano technology is clearly indicated. There is more than one chapter describing the use of nanomaterials as sensors. In this volume, an effort has been made to clarify the use of such materials from non-conductor to highly conducting species. It is expected that this book will be useful to the postgraduate and research students as this is a multidisciplinary subject.

Book Fabrication of Metal   Organic Framework Derived Nanomaterials and Their Electrochemical Applications

Download or read book Fabrication of Metal Organic Framework Derived Nanomaterials and Their Electrochemical Applications written by Wei Xia and published by Springer. This book was released on 2018-04-03 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials.

Book Metal Organic Framework Materials

Download or read book Metal Organic Framework Materials written by Leonard R. MacGillivray and published by John Wiley & Sons. This book was released on 2014-09-19 with total page 1210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-Organic Frameworks (MOFs) are crystalline compounds consisting of rigid organic molecules held together and organized by metal ions or clusters. Special interests in these materials arise from the fact that many are highly porous and can be used for storage of small molecules, for example H2 or CO2. Consequently, the materials are ideal candidates for a wide range of applications including gas storage, separation technologies and catalysis. Potential applications include the storage of hydrogen for fuel-cell cars, and the removal and storage of carbon dioxide in sustainable technical processes. MOFs offer the inorganic chemist and materials scientist a wide range of new synthetic possibilities and open the doors to new and exciting basic research. Metal-Organic Frameworks Materials provides a solid basis for the understanding of MOFs and insights into new inorganic materials structures and properties. The volume also reflects progress that has been made in recent years, presenting a wide range of new applications including state-of-the art developments in the promising technology for alternative fuels. The comprehensive volume investigates structures, symmetry, supramolecular chemistry, surface engineering, recognition, properties, and reactions. The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc

Book Metal Organic Frameworks

    Book Details:
  • Author : Leonard R. MacGillivray
  • Publisher : John Wiley & Sons
  • Release : 2010-12-17
  • ISBN : 111803516X
  • Pages : 440 pages

Download or read book Metal Organic Frameworks written by Leonard R. MacGillivray and published by John Wiley & Sons. This book was released on 2010-12-17 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-organic frameworks represent a new class of materials that may solve the hydrogen storage problem associated with hydrogen-fueled vehicles. In this first definitive guide to metal-organic framework chemistry, author L. MacGillivray addresses state-of-art developments in this promising technology for alternative fuels. Providing professors, graduate and undergraduate students, structural chemists, physical chemists, and chemical engineers with a historical perspective, as well as the most up-to-date developments by leading experts, Metal-Organic Frameworks examines structure, symmetry, supramolecular chemistry, surface engineering, metal-organometallic frameworks, properties, and reactions.