EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development of High Efficiency Stable Dye Sensitized Solar Cell

Download or read book Development of High Efficiency Stable Dye Sensitized Solar Cell written by Philippe Wyss and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dye Sensitized Solar Cells

Download or read book Dye Sensitized Solar Cells written by Masoud Soroush and published by Academic Press. This book was released on 2019-03-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dye-Sensitized Solar Cells: Mathematical Modelling and Materials Design and Optimization presents the latest information as edited from leaders in the field. It covers advances in DSSC design, fabrication and mathematical modelling and optimization, providing a comprehensive coverage of various DSSC advances that includes different system scales, from electronic to macroscopic level, and a consolidation of the results with fundamentals. The book is extremely useful as a monograph for graduate students and researchers, but is also a comprehensive, general reference on state-of-the-art techniques in modelling, optimization and design of DSSCs.

Book Development of High Efficiency  Low Cost  and Flexible Dye Sensitized Solar Cells

Download or read book Development of High Efficiency Low Cost and Flexible Dye Sensitized Solar Cells written by and published by . This book was released on 2006 with total page 49 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report results from a contract tasking Swiss Federal Institute of Technology (EPFL) as follows: The Grantee will investigate and develop a new class of polymer-gel electrolytes for use in flexible dye-sensitized solar cells in order to boost power efficiencies above the 15% light to electrical conversion efficiency.

Book Development of High Efficiency Dye Sensitized Solar Cells

Download or read book Development of High Efficiency Dye Sensitized Solar Cells written by Jake Bowers and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaic technologies use light from the sun to create electricity, using a wide range of materials and mechanisms. The generation of clean, renewable energy using this technology must become price competitive with conventional power generation if it is to succeed on a large scale. The field of photovoltaics can be split into many sub-groups, however the overall aim of each is to reduce the cost per watt of the produced electricity. One such solar cell which has potential to reduce the cost significantly is the dye sensitised solar cell (DSC), which utilises cheap materials and processing methods. The reduction in cost of the generated electricity is largely dependent on two parameters. Firstly, the efficiency that the solar cell can convert light into electricity and secondly, the cost to deposit the solar cell. This thesis aims to address both factors, specifically looking at altering the transparent conducting oxide (TCO) and substrate in the solar cell. One method to improve the overall conversion efficiency of the device is to implement the DSC as the top cell in a tandem structure, with a bottom infra-red absorbing solar cell. The top solar cell in such a structure must not needlessly absorb photons which the bottom solar cell can utilise, which can be the case in solar cells utilising standard transparent contacts such as fluorine-doped tin oxide. In this work, transparent conducting oxides with high mobility such as titanium-doped indium oxide (ITiO) have been used to successfully increase the amount of photons through a DSC, available for a bottom infra-red sensitive solar cell such as Cu(In, Ga)Se2 (CIGS). Although electrically and optically of very high quality, the production of DSCs on this material is difficult due to the heat and chemical instability of the film, as well as the poor adhesion of TiO2 on the ITiO surface. Deposition of a interfacial SnO2 layer and a post-deposition annealing treatment in vacuum aided the deposition process, and transparent DSCs of 7.4% have been fabricated. The deposition of a high quality TCO utilising cheap materials is another method to improve the cost/watt ratio. Aluminium-doped zinc oxide (AZO) is a TCO which offers very high optical and electronic quality, whilst avoiding the high cost of indium based TCOs. The chemical and thermal instability of AZO films though present a problem due to the processing steps used in DSC fabrication. Such films etch very easily in slightly acidic environments, and are susceptible to a loss of conductivity upon annealing in air, so some steps have to be taken to fabricate intact devices. In this work, thick layers of SnO2 have been used to reduce the amount of etching on the surface of the film, whilst careful control of the deposition parameters can produce AZO films of high stability. High efficiency devices close to 9% have been fabricated using these stacked layers. Finally, transferring solar cells from rigid to flexible substrates offers cost advantages, since the price of the glass substrate is a significant part of the final cost of the cell. Also, the savings associated with roll to roll deposition of solar cells is large since the production doesn't rely on a batch process, using heavy glass substrates, but a fast, continuous process. This work has explored using the high temperature stable polymer, polyimide, commonly used in CIGS and CdTe solar cells. AZO thin films have been deposited on 7.5um thick polyimide foils, and DSCs of efficiency over 4% have been fabricated on the substrates, using standard processing methods.

Book Development of Dye Sensitized Solar Cell for High Conversion Efficiency

Download or read book Development of Dye Sensitized Solar Cell for High Conversion Efficiency written by Yongwoo Kim and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Rational Design of Solar Cells for Efficient Solar Energy Conversion

Download or read book Rational Design of Solar Cells for Efficient Solar Energy Conversion written by Alagarsamy Pandikumar and published by John Wiley & Sons. This book was released on 2018-09-05 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: An interdisciplinary guide to the newest solar cell technology for efficient renewable energy Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells. The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion. This important resource: Offers a comprehensive review of recent developments in solar cell technology Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application. Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.

Book Dye sensitized Solar Cells

    Book Details:
  • Author : Kuppuswamy Kalyanasundaram
  • Publisher : CRC Press
  • Release : 2010-08-03
  • ISBN : 148224716X
  • Pages : 320 pages

Download or read book Dye sensitized Solar Cells written by Kuppuswamy Kalyanasundaram and published by CRC Press. This book was released on 2010-08-03 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several forms of thin-film solar cells are being examined as alternatives to silicon-solar cells-one of the most promising technologies is the dye-sensitized solar cell (DSC), with proven efficiencies that approach 11%. This book, which provides a comprehensive look at this promising technology, aims to provide both a graduate level text that bring

Book Potential Development in Dye Sensitized Solar Cells for Renewable Energy

Download or read book Potential Development in Dye Sensitized Solar Cells for Renewable Energy written by Alagarsamy Pandikumar and published by Trans Tech Publications Ltd. This book was released on 2013-10-25 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume is indexed by Thomson Reuters BCI (WoS). The development of photovoltaic technology is expected to solve problems related to energy shortages and environmental pollution caused by the use of fossil fuels. Dye-sensitizedsolar cells (DSSCs) are promising next-generation alternatives to conventional silicon-based photovoltaic devices owing to their low manufacturing cost and potentially high conversion efficiency. This special topic volume addresses recent advances in the research on dye-sensitized solar cells. The focus of this special topic volume is on materials development (sensitizers, nanostructured oxide films, and electrolyte), but commercialization. This work illustrates a new pathway to achieve highly efficient DSSCs for practical applications.

Book Fundamentals of Solar Cell Design

Download or read book Fundamentals of Solar Cell Design written by Inamuddin and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

Book Physics of Solar Cells

    Book Details:
  • Author : Peter Würfel
  • Publisher : John Wiley & Sons
  • Release : 2016-06-13
  • ISBN : 352741309X
  • Pages : 288 pages

Download or read book Physics of Solar Cells written by Peter Würfel and published by John Wiley & Sons. This book was released on 2016-06-13 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages. It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been introduced theoretically in earlier chapters become experimentally accessible. With exercises after each chapter to reinforce the newly acquired knowledge and requiring no more than standard physics knowledge, this book enables students and professionals to understand the factors driving conversion efficiency and to apply this to their own solar cell development.

Book Interfacial Engineering in Functional Materials for Dye Sensitized Solar Cells

Download or read book Interfacial Engineering in Functional Materials for Dye Sensitized Solar Cells written by Alagarsamy Pandikumar and published by John Wiley & Sons. This book was released on 2019-10-30 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers an Interdisciplinary approach to the engineering of functional materials for efficient solar cell technology Written by a collection of experts in the field of solar cell technology, this book focuses on the engineering of a variety of functional materials for improving photoanode efficiency of dye-sensitized solar cells (DSSC). The first two chapters describe operation principles of DSSC, charge transfer dynamics, as well as challenges and solutions for improving DSSCs. The remaining chapters focus on interfacial engineering of functional materials at the photoanode surface to create greater output efficiency. Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells begins by introducing readers to the history, configuration, components, and working principles of DSSC It then goes on to cover both nanoarchitectures and light scattering materials as photoanode. Function of compact (blocking) layer in the photoanode and of TiCl4 post-treatment in the photoanode are examined at next. Next two chapters look at photoanode function of doped semiconductors and binary semiconductor metal oxides. Other chapters consider nanocomposites, namely, plasmonic nanocomposites, carbon nanotube based nanocomposites, graphene based nanocomposites, and graphite carbon nitride based nanocompositesas photoanodes. The book: Provides comprehensive coverage of the fundamentals through the applications of DSSC Encompasses topics on various functional materials for DSSC technology Focuses on the novel design and application of materials in DSSC, to develop more efficient renewable energy sources Is useful for material scientists, engineers, physicists, and chemists interested in functional materials for the design of efficient solar cells Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells will be of great benefit to graduate students, researchers and engineers, who work in the multi-disciplinary areas of material science, engineering, physics, and chemistry.

Book Silicon Heterojunction Solar Cells

Download or read book Silicon Heterojunction Solar Cells written by W.R. Fahrner and published by Trans Tech Publications Ltd. This book was released on 2006-08-15 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.

Book Development and Characterizationof Flexible Dye Sensitized Solar Cells

Download or read book Development and Characterizationof Flexible Dye Sensitized Solar Cells written by Hasitha Chandana Weerasinghe and published by . This book was released on 2010 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaic technology has been realized as a suitable renewable power source for the fulfillment of increasing world energy consumption with least impact on the environment. Dye sensitized solar cells (DSSCs) is one such photovoltaic technology which has gained a great deal of attention due to the low manufacturing cost compared tothe conventional Si-based solar cell technologies. Fabrication of DSSCs on flexible substrates enables manufacturing solar cells using cost-effective and speedy roll-to-roll processing systems and also makes the device flexible and light-weight. However,polymer-based DSSCs set restrictions to their materials and fabrication processes. In this thesis, fabrication of DSSCs on flexible polymer substrates have been extensively studied concentrating on the factors related to the slurry preparation, deposition of films and processing of electrodes to improve the mechanical and photovoltaic properties of the device.Initially, mechanically-stable, well adhered TiO2 films based on nanocrystallineP-25 TiO2 slurries were fabricated on indium tin oxide (ITO) coated plastic substrates using ball milling as a part of the processing stage, without the need for binders or high temperature annealing. The strength of the TiO2 films was examined by a novel nanoscratch technique which was developed to assess inter-particle adhesion. Interfacial and photovoltaic properties of flexible dye sensitized solar cells with a ruthenium dye involving two tetra-butyl ammonium carboxylate groups (N-719) were studied. The maximum power conversion efficiency of 4.2% is obtained under illumination of100mWcm-2, for the electrodes fabricated using 20 hour milled slurry and shorter or longer milling times were found to be less optimal.During the second stage of this work, binder-free titania pastes with high viscosity were developed for the preparation of improved quality electrodes for dye sensitized solar cells on plastic substrates. Rheological behavior of ethanol based titania pastes with theaddition of ammonia, hydrochloric acid and water was investigated. The change in the viscosity is correlated with the measured zeta potential of the colloidal titania pastes.Improved inter-particle connectivity and hence better solar cell performance was found for the pastes containing acid or water. However, no such improvements were seen for the pastes containing ammonia. Maximum light to electrical energy conversion efficiencies of 4.9% and 5.0% were obtained for the plastic based dye-sensitized solar cells fabricated using water and acid-added slurries respectively.Thirdly, chemically-sintered, mesoporous ZnO electrodes with improved interparticle connectivity were prepared in the absence of any organic binders, using ammoniaas the sole reagent to encourage interparticle connectivity. The reaction with ammoniumhydroxide was found to increase the connections between ZnO grains by forming nanorods like a structure. The enhancement of adhesion among ZnO grains was evaluated from nano-scratch technique. Two different xanthene dyes were used to sensitize ZnOelectrodes. The photo-voltage of 657 mV, fill-factor of 73 % and photo-current of 4.1mAcm-2 with the maximum light to-electrical energy conversion efficiency of 2.0 % were obtained for plastic based ZnO|Mercurochrome|electrolyte solar cell under 100 mWcm-2light intensity.One of the biggest challenges for DSSCs on plastic substrates is the difficulty in making good quality nano porous TiO2 films with both good mechanical stability and high electrical conductivity. Cold isostatic pressing (CIP) is a powder compaction technique that applies an isostatic pressure to a powder sample in all directions. It is particularly suitable for making thin films on plastic substrates and even on non-flat surfaces. During the final stage of this work, cold isostatically-pressed nanocrytallineTiO2 electrodes with excellent mechanical robustness are prepared on indium tin oxide(ITO) coated polyethylene naphthalate (PEN) substrates in the absence of organic binders, and without heat treatment. The morphology and the physical properties of theTiO2 films prepared by the CIP method were found to be very compatible with requirements for fabricating flexible DSSCs on plastics. This room-temperature processing technique has led to an important technical breakthrough in producing high efficiency flexible DSSCs. Devices fabricated on ITO/PEN films by this method using standard P-25 TiO2 films with a Ru-complex sensitizer yielded a maximum IPCE of 72%at the wavelength of 530 nm and showed high conversion efficiencies of 6.3% and 7.4%for incident light intensities of 100 and 15 mWcm-2, respectively, which are the highest power conversion efficiencies achieved so far for any DSSC on a polymer substrate using the widely-used, commercially-available P-25 TiO2 powder.

Book TiO2 Nanotube Arrays

Download or read book TiO2 Nanotube Arrays written by Craig A. Grimes and published by Springer Science & Business Media. This book was released on 2009-08-11 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is the first book to provide an overview of this rapidly growing field. Vertically oriented, highly ordered TiO2 nanotube arrays are unique and easily fabricated materials with an architecture that demonstrates remarkable charge transfer as well as photocatalytic properties. This volume includes an introduction to TiO2 nanotube arrays, as well as a description of the material properties and distillation of the current research. Applications considered include gas sensing, heterojunction solar cells, water photoelectrolysis, photocatalytic CO2 reduction, as well as several biomedical applications. Written by leading researchers in the field, TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is a valuable reference for chemists, materials scientists and engineers involved with renewable energy sources, biomedical engineering, and catalysis, to cite but a few examples.

Book High Efficiency Solar Cells

Download or read book High Efficiency Solar Cells written by Xiaodong Wang and published by Springer Science & Business Media. This book was released on 2013-11-01 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the effort to increase the contribution of solar cells (photovoltaics) to our energy mix, this book addresses three main areas: making existing technology cheaper, promoting advanced technologies based on new architectural designs, and developing new materials to serve as light absorbers. Leading scientists throughout the world create a fundamental platform for knowledge sharing that combines the physics, materials, and device architectures of high-efficiency solar cells. While providing a comprehensive introduction to the field, the book highlights directions for further research, and is intended to stimulate readers’ interest in the development of novel materials and technologies for solar energy applications.

Book Solar Cells and Their Applications

Download or read book Solar Cells and Their Applications written by Lewis M. Fraas and published by Wiley. This book was released on 2010-07-13 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: A major update of solar cell technology and the solar marketplace Since the first publication of this important volume over a decade ago, dramatic changes have taken place with the solar market growing almost 100-fold and the U.S. moving from first to fourth place in the world market as analyzed in this Second Edition. Three bold new opportunities are identified for any countries wanting to improve market position. The first is combining pin solar cells with 3X concentration to achieve economic competitiveness near term. The second is charging battery-powered cars with solar cell–generated electricity from arrays in surrounding areas—including the car owners' homes—while simultaneously reducing their home electricity bills by over ninety percent. The third is formation of economic "unions" of sufficient combined economic size to be major competitors. In this updated edition, feed-in tariffs are identified as the most effective approach for public policy. Reasons are provided to explain why pin solar cells outperform more traditional pn solar cells. Field test data are reported for nineteen percent pin solar cells and for ~500X concentrating systems with bare cell efficiencies approaching forty percent. Paths to bare cell efficiencies over fifty percent are described, and key missing program elements are identified. Since government support is needed for new technology prototype integration and qualification testing before manufacturing scale up, the key economic measure is identified in this volume as the electricity cost in cents per kilowatt-hour at the complete installed system level, rather than just the up-front solar cell modules' costs in dollars per watt. This Second Edition will benefit technologists in the fields of solar cells and systems; solar cell researchers; power systems designers; academics studying microelectronics, semiconductors, and solar cells; business students and investors with a technical focus; and government and political officials developing public policy.

Book Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion

Download or read book Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion written by Mary D. Archer and published by World Scientific. This book was released on 2008 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, expert authors describe advanced solar photon conversion approaches that promise highly efficient photovoltaic and photoelectrochemical cells with sophisticated architectures on the one hand, and plastic photovoltaic coatings that are inexpensive enough to be disposable on the other. Their leitmotifs include light-induced exciton generation, junction architectures that lead to efficient exciton dissociation, and charge collection by percolation through mesoscale phases. Photocatalysis is closely related to photoelectrochemistry, and the fundamentals of both disciplines are covered in this volume.