EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Producing Fuels and Fine Chemicals from Biomass Using Nanomaterials

Download or read book Producing Fuels and Fine Chemicals from Biomass Using Nanomaterials written by Rafael Luque and published by CRC Press. This book was released on 2013-10-28 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scarcity of resources and increasing population and energy demands are important issues of the twenty-first century. A multidisciplinary approach is needed to produce suitable alternatives—such as renewable resources—for a more sustainable future. One of the most promising and widely available renewable feedstocks is biomass, which has significant potential for conversion to materials, fuels, and chemicals. In addition, nanomaterials can be designed for a range of applications including energy storage, fuel production, and nanocatalysis. Designing nanomaterials for the valorization of biomass and waste feedstocks is a major step in advancing the application of nanomaterials and helping to move us toward the goal of a sustainable economy. Producing Fuels and Fine Chemicals from Biomass Using Nanomaterials offers a wide-ranging approach to the development of innovative nanomaterials for biomass conversion and the production of energy and high-added-value chemicals, including biochemicals, biomaterials, and biofuels. The book is organized into three parts according to nanomaterial applications: Nanomaterials for Energy Storage and Conversion, Biofuels from Biomass Valorization Using Nanomaterials, and Production of High-Added-Value Chemicals from Biomass Using Nanomaterials. Providing a multidisciplinary perspective, this book covers the most important aspects of topics such as solar energy storage, design of carbonaceous nanomaterials as heterogeneous catalysts for producing biofuels, catalytic reforming of biogas into syngas using a range of nanoparticles, and biofuels production from waste oils and fats. It also describes the design and development of biocatalytic, solid acid, photocatalytic, and nanostructured materials for the conversion of various biomass feedstocks to valuable chemicals as intermediates to end products, such as biopolymers, bioplastics, biofuels, agrochemicals, and pharmaceutical products.

Book Nanoporous Solid Acid Materials for Biomass Conversion Into Value added Chemicals

Download or read book Nanoporous Solid Acid Materials for Biomass Conversion Into Value added Chemicals written by Hong Je Cho and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Growing environmental concerns associated with diminishing reserves of fossil fuels has led to accelerated research efforts towards the discovery of new catalytic processes for converting renewable lignocellulosic biomass into value-added chemicals. For this conversion, nanoporous solid acid materials have been widely used because of their excellent hydrothermal stability and molecular sieving capability. In the thesis, hierarchical Lewis acid zeolites with ordered mesoporosity and MFI topology (three dimensionally ordered mesoporous imprinted (3DOm-i) Sn-MFI) were successfully synthesized within the confined space of three dimensionally ordered mesoporous (3DOm) carbon by a seeded growth method. The obtained 3DOm-i Sn-MFI showed at least 3 times higher catalytic activities for the biomass-derived sugar isomerization than conventional Sn-MFI zeolites. This is because the mesopores in the hierarchical zeolites greatly enhance molecular transport. In addition, Lewis acid Sn-MFI combined with Pt metal nanoparticles (Pt/Sn-MFI) could oxidize glycerol to produce lactic acid (LA) under base-free conditions. Glycerol is a by-product in biodiesel synthesis. 80.5% selectivity of LA was achieved at 89.8% conversion of glycerol using a bifunctional Pt/Sn-MFI catalyst under base-free conditions. In the tandem reaction pathway, selective oxidation of glycerol to glyceraldehyde (GLA) and dihydroxyacetone (DHA) by using Pt catalysts was cascaded with Lewis acid catalyzed isomerization of GLA/DHA into LA. Moreover, morphology-tunable Lewis acid Sn-BEA with hydrophobicity was successfully synthesized by recrystallization of post-synthesized Sn-BEA (Sn-BEA-PS) using ammonium fluoride (NH4F) and tetraethylammonium bromide (TEABr). This recrystallization includes simultaneous procedures of dissolution-reassembly: i) the dissolution of Si-O bonds around silanol nests by fluoride ions, and ii) the reassembly of fragmented silica species into defect-free zeolite framework in the presence of TEA ions. The recrystallization also increased open Lewis acid Sn sites. These findings can explain why a 2.5 times higher rate of aqueous glucose isomerization was achieved on recrystallized Sn-BEA (Sn-BEA-RC), compared with Sn-BEA-PS. Moreover, in the isomerization of bulky lactose (C12 sugar) dissolved in MeOH, hierarchical Sn-BEA-RC showed a 3.2-fold higher activity than hydrothermally synthesized Sn-BEA (Sn-BEA-HF), due to the mesopores and enhanced organophobic character of the recrystallized catalyst. In the final part, renewable p-xylene synthesis was investigated. p-Xylene is a major commodity chemical used for the production of polyethylene terephthalate (PET) with applications in polyester fibers, films and bottles. Diels-Alder cycloaddition of 2,5-dimethylfuran (DMF) and ethylene with subsequent dehydration of the cycloadduct intermediate to produce p-xylene is an attractive reaction pathway for its production from biomass feedstocks. It was shown that phosphorous-containing zeolite BEA (P-BEA) is active, stable and selective for this reaction with an unprecedented p-xylene yield of 97%. It can selectively catalyze the dehydration reaction from the furan-ethylene cycloadduct to p-xylene, without performing side reactions which include alkylation and oligomerization. This acid catalyst establishes a commercially attractive process for renewable p-xylene production.

Book Nanoporous Materials for Molecule Separation and Conversion

Download or read book Nanoporous Materials for Molecule Separation and Conversion written by Jian Liu and published by Elsevier. This book was released on 2020-07-04 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoporous Materials for Molecule Separation and Conversion cover the topic with sections on nanoporous material synthesis and characterization, nanoporous materials for molecule separation, and nanoporous materials for energy storage and renewable energy. Typical nanoporous materials including carbon, zeolite, silica and metal-organic frameworks and their applications in molecule separation and energy related applications are covered. In addition, the fundamentals of molecule adsorption and molecule transport in nanoporous materials are also included, providing readers with a stronger understanding of the principles and topics covered. This is an important reference for anyone exploring nanoporous materials, including researchers and postgraduate students in materials science and chemical engineering. In addition, it is ideal for industry professionals working on a wide range of applications for nanoporous materials. Outlines the fundamental principles of nanoporous materials design Explores the application of nanoporous materials in important areas such as molecule separation and energy storage Gives real-life examples of how nanoporous materials are used in a variety of industry sector

Book Nanoporous Materials

    Book Details:
  • Author : Qiang Xu
  • Publisher : CRC Press
  • Release : 2013-01-04
  • ISBN : 1439892075
  • Pages : 384 pages

Download or read book Nanoporous Materials written by Qiang Xu and published by CRC Press. This book was released on 2013-01-04 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past two decades, the field of nanoporous materials has undergone significant developments. As these materials possess high specific surface areas, well-defined pore sizes, and functional sites, they show a great diversity of applications such as molecular adsorption/storage and separation, sensing, catalysis, energy storage and conversion,

Book Advanced Materials for a Sustainable Environment

Download or read book Advanced Materials for a Sustainable Environment written by Naveen Kumar and published by CRC Press. This book was released on 2022-12-30 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes recent and critical aspects of advanced materials for environmental protection and remediation. It explores the various development aspects related to environmental remediation, including design and development of novel and highly efficient materials, aimed at environmental sustainability. Synthesis of advanced materials with desirable physicochemical properties and applications is covered as well. Distributed across 13 chapters, the major topics covered include sensing and elimination of contaminants and hazardous materials via advanced materials along with hydrogen energy, biofuels, and CO2 capture technology. Discusses the development in design of synthesis process and materials with sustainable approach. Covers removal of biotic and abiotic wastes from the aqueous systems. Includes hydrogen energy and biofuels under green energy production. Explores removal of environmental (soil and air) contaminants with nanomaterials. Reviews advanced materials for environmental remediation in both liquid and gas phases.

Book Nanoporous Catalysts for Biomass Conversion

Download or read book Nanoporous Catalysts for Biomass Conversion written by Feng-Shou Xiao and published by John Wiley & Sons. This book was released on 2017-09-05 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to the design, synthesis, characterization, and catalytic properties of nanoporous catalysts for the biomass conversion With the specter of peak oil demand looming on the horizon, and mounting concerns over the environmental impact of greenhouse gas emissions, biomass has taken on a prominent role as a sustainable alternative fuel source. One critical aspect of the biomass challenge is the development of novel catalytic materials for effective and controllable biomass conversion. Edited by two scientists recognized internationally for their pioneering work in the field, this book focuses on nanoporous catalysts, the most promising class of catalytic materials for the conversion of biomass into fuel and other products. Although various catalysts have been used in the conversion of biomass-derived feedstocks, nanoporous catalysts exhibit high catalytic activities and/or unique product selectivities due to their large surface area, open nanopores, and highly dispersed active sites. This book covers an array of nanoporous catalysts currently in use for biomass conversion, including resins, metal oxides, carbons, mesoporous silicates, polydivinylbenzene, and zeolites. The authors summarize the design, synthesis, characterization and catalytic properties of these nanoporous catalysts for biomass conversions, discussing the features of these catalysts and considering future opportunities for developing more efficient catalysts. Topics covered include: Resins for biomass conversion Supported metal oxides/sulfides for biomass oxidation and hydrogenation Nanoporous metal oxides Ordered mesoporous silica-based catalysts Sulfonated carbon catalysts Porous polydivinylbenzene Aluminosilicate zeolites for bio-oil upgrading Rice straw Hydrogenation for sugar conversion Lignin depolymerization Timely, authoritative, and comprehensive, Nanoporous Catalysts for Biomass Conversion is a valuable working resource for academic researchers, industrial scientists and graduate students working in the fields of biomass conversion, catalysis, materials science, green and sustainable chemistry, and chemical/process engineering.

Book Biomass Conversion through Nanomaterials

Download or read book Biomass Conversion through Nanomaterials written by Tariq Altalhi and published by Elsevier. This book was released on 2025-02-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomass Conversion through Nanomaterials: Green Sustainable Process for Chemical and Environmental Engineering and Science (GSPCEES) presents the catalytic processing of biomass to produce fuels as well as chemicals. The book employs diverse monomers including glucose/fructose as well as polymers such as starch/cellulose in various catalytic processes. It shows that nanomaterials with porous structures, with increased surface areas, and acidity strengthen the catalytic roles as well as that numerous additional nanomaterials with comparable qualities, such as those based on carbon, resins, metal oxides, zeolites, silica, organic polymers, and many others, enhance the bioconversion processes of biomass. The book also highlights the importance of nanotechnology in the emergence of successful biomass for producing high-quality bioenergy and thoroughly covers varied bioenergy applications using nanomaterials. It highlights the possibility that enabling biomass through nanomaterials improves the effectiveness of various bioenergy sources, such as biofuels, microbial fuel cells, etc. After reading the book you gained a better understanding of biomass conversion using nanomaterials, its associated technologies, and its various applications.

Book Solid Catalysts for the Upgrading of Renewable Sources

Download or read book Solid Catalysts for the Upgrading of Renewable Sources written by Nicoletta Ravasio and published by MDPI. This book was released on 2019-03-26 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of solid catalysts for the upgrade of renewable sources gives the opportunity to combine the two main cores of green chemistry, that is, on the one hand, the set-up of sustainable processes and, on the other, the use of biomass-derived materials. Solid catalysts have taken on a leading role in traditional petrochemical processes and could represent a key tool in new biorefinery-driven technologies. This book will cover topics related to the preparation and use of heterogeneous catalytic systems for the transformation of renewable sources, as well as of materials deriving from agro-industrial wastes and by-products. At the same time, the ever-increasing importance of bioproducts, due to the acceptance and request of consumers, makes the upgrade of biomass into chemicals and materials not only an environmental issue, but also an economical advantage.

Book Functionalized Nanomaterials for Catalytic Application

Download or read book Functionalized Nanomaterials for Catalytic Application written by Chaudhery Mustansar Hussain and published by John Wiley & Sons. This book was released on 2021-07-21 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functionalized Nanomaterials for Catalytic Application

Book Lignin Chemistry

    Book Details:
  • Author : Yuhe Liao
  • Publisher : John Wiley & Sons
  • Release : 2024-05-31
  • ISBN : 3527839852
  • Pages : 498 pages

Download or read book Lignin Chemistry written by Yuhe Liao and published by John Wiley & Sons. This book was released on 2024-05-31 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lignin Chemistry A thorough reference guide to Lignin Chemistry, from inherent structure revealing to transformation into chemicals, fuels, and materials Climate change, driven by rising greenhouse gas emissions, is the defining challenge of our time. Reducing our dependence on non-renewable resources such as fossil fuels will require alternative, more sustainable resources. Lignin, the only widely-occurring, renewable, aromatic bio-polymer in Nature, has a range of application potential in the production of chemicals, fuels, and other industrial materials. Lignin science has become one of the fastest-growing and most significant areas of sustainable chemistry in the world. Lignin Chemistry: Characterization, Isolation, and Valorization presents a systematic, multidisciplinary overview of this cutting-edge field and its current state of research. Beginning with a robust characterization of lignin, the book addresses the isolation and transformation of lignin, as well as the book inspires with a plethora of applications. The result is a critical resource for researchers and professionals in any area of academic or industry where renewable biomass, in particular lignin, has importance. Lignin Chemistry readers will find: Thermochemical and catalytic strategies for lignin conversion Detailed discussion of the valorization of lignin towards biopolymers, nanoparticles, carbon fibers and materials, and hydrogels An authorial team with immense and varied research experience Lignin Chemistry is ideal for chemical engineers, catalytic chemists, biochemists, material scientists, and analytical chemists in industry.

Book Gaseous Carbon Waste Streams Utilization

Download or read book Gaseous Carbon Waste Streams Utilization written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-02-22 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the quest to mitigate the buildup of greenhouse gases in Earth's atmosphere, researchers and policymakers have increasingly turned their attention to techniques for capturing greenhouse gases such as carbon dioxide and methane, either from the locations where they are emitted or directly from the atmosphere. Once captured, these gases can be stored or put to use. While both carbon storage and carbon utilization have costs, utilization offers the opportunity to recover some of the cost and even generate economic value. While current carbon utilization projects operate at a relatively small scale, some estimates suggest the market for waste carbon-derived products could grow to hundreds of billions of dollars within a few decades, utilizing several thousand teragrams of waste carbon gases per year. Gaseous Carbon Waste Streams Utilization: Status and Research Needs assesses research and development needs relevant to understanding and improving the commercial viability of waste carbon utilization technologies and defines a research agenda to address key challenges. The report is intended to help inform decision making surrounding the development and deployment of waste carbon utilization technologies under a variety of circumstances, whether motivated by a goal to improve processes for making carbon-based products, to generate revenue, or to achieve environmental goals.

Book Fast Pyrolysis of Biomass

    Book Details:
  • Author : Robert C Brown
  • Publisher : Royal Society of Chemistry
  • Release : 2017-07-07
  • ISBN : 1782626182
  • Pages : 291 pages

Download or read book Fast Pyrolysis of Biomass written by Robert C Brown and published by Royal Society of Chemistry. This book was released on 2017-07-07 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fast pyrolysis and related catalytic pyrolysis are of increasing interest as pathways to advanced biofuels that closely mimic traditional petroleum products. Research has moved from empirical investigations to more fundamental studies of pyrolysis mechanisms. Theories on the chemical and physical pathways from plant polymers to pyrolysis products have proliferated as a result. This book brings together the latest developments in pyrolysis science and technology. It examines, reviews and challenges the unresolved and sometimes controversial questions about pyrolysis, helping advance the understanding of this important technology and stimulating discussion on the various competing theories of thermal deconstruction of plant polymers. Beginning with an introduction to the biomass-to-biofuels process via fast pyrolysis and catalytic pyrolysis, chapters address prominent questions such as whether free radicals or concerted reactions dominate deconstruction reactions. Finally, the book concludes with an economic analysis of fast pyrolysis versus catalytic pyrolysis. This book will be of interest to advanced students and researchers interested in the science behind renewable fuel technology, and particularly the thermochemical processing of biomass.

Book Waste to Profit

    Book Details:
  • Author : Meera Sheriffa Begum K.M.
  • Publisher : CRC Press
  • Release : 2023-06-19
  • ISBN : 1000886883
  • Pages : 431 pages

Download or read book Waste to Profit written by Meera Sheriffa Begum K.M. and published by CRC Press. This book was released on 2023-06-19 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Waste to Profit: Environmental Concerns and Sustainable Development gives information about selecting the most suitable technology for waste treatment and energy recovery under different conditions. It contains techno-economic analysis, life cycle assessment, optimization of tools and technologies, including overview of various technologies involved in the treatment of wastes and factors influencing the involved processes. Finally, it explores the environmental, socioeconomic, and sustainability impact of different waste-to-energy systems. Features: Reviews energy sources and technologies from waste, their environmental interactions, and the relevant global energy policies Provides overview of waste-to-energy technologies for a sustainable future Explores physicochemical properties involved in the pertinent process and technologies Gives a multidisciplinary view about energy conversion and management, planning, controlling, and monitoring processes Discusses information in transferring the technologies' industrial level and global level to meet the requirements of different countries This book is aimed at researchers and graduate students in environmental engineering, energy engineering, waste management, waste to energy, and bioenergy.

Book Biomass  Biofuels  Biochemicals

Download or read book Biomass Biofuels Biochemicals written by Hu Li and published by Elsevier. This book was released on 2022-01-30 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biochemicals and Materials Production from Sustainable Biomass Resources provides a detailed overview of the experimentally developed approaches and strategies that facilitate carbon-based materials and fine chemicals derivation from biomass feedstocks with robust catalyst systems and renewed conversion routes. In addition, the book highlights theoretical methods like techno-economic analysis of biobutanol synthesis. As academia and industry are now striving to substitute fossil-based chemicals with alternative renewable resources, second-generation lignocellulosic biomass which does not depend on the food cycle has become increasingly important. Lignocellulosic biomass is composed of three major polymeric components - lignin, cellulose and hemicellulose. The polymers can be degraded into monomeric counterparts through selective conversion routes like hydrolysis of cellulose to glucose and of hemicellulose to xylose. Includes the recent development of biomass-derived high-value chemicals and functional materials Describes theoretical and technical details of specific conversion routes and preparation methods Covers jointly organic transformations, catalytic synthesis, reaction mechanisms, thermal stability, reaction parameters and solvent effects

Book Sustainable catalytic production of bio based heteroatom containing compounds  volume III

Download or read book Sustainable catalytic production of bio based heteroatom containing compounds volume III written by Hu Li and published by Frontiers Media SA. This book was released on 2023-05-29 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanocasting

    Book Details:
  • Author : An-Hui Lu
  • Publisher : Royal Society of Chemistry
  • Release : 2010
  • ISBN : 0854041885
  • Pages : 279 pages

Download or read book Nanocasting written by An-Hui Lu and published by Royal Society of Chemistry. This book was released on 2010 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured materials with tailored properties are regarded as a fundamental element in the development of future science and technology. Research is still ongoing into the nanosized construction elements required to create functional solids. The recently developed technique, nanocasting, has great advantage over others in terms of the synthesis of special nanostructured materials by the careful choice of suitable elements and nanoengineering steps. This new book summarizes the recent developments in nanocasting, including the principles of nanocasting, syntheses of novel nanostructured materials, characterization methods, detailed synthetic recipes and further possible development in this area. The book focuses on the synthesis of porous solids from the viewpoint of methodology and introduces the science of nanocasting from fundamental principles to their use in synthesis of various materials. It starts by outlining the principles of nanocasting, requirements to the templates and precursors and the tools needed to probe matter at the nanoscale level. It describes how to synthesize nano structured porous solids with defined characteristics and finally discusses the functionalization and application of porous solids. Special attention is given to new developments in this field and future perspectives. A useful appendix covering the detailed synthetic recipes of various templates including porous silica, porous carbon and colloidal spheres is included which will be invaluable to researchers wanting to follow and reproduce nanocast materials. Topics covered in the book include: * inorganic chemistry * organic chemistry * solution chemistry * sol-gel and interface science * acid-base equilibria * electrochemistry * biochemistry * confined synthesis The book gives readers not only an overview of nanocasting technology, but also sufficient information and knowledge for those wanting to prepare various nanostructured materials without needing to search the available literature.