Download or read book Finite Difference Methods in Heat Transfer written by M. Necati Özişik and published by CRC Press. This book was released on 2017-07-20 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite Difference Methods in Heat Transfer, Second Edition focuses on finite difference methods and their application to the solution of heat transfer problems. Such methods are based on the discretization of governing equations, initial and boundary conditions, which then replace a continuous partial differential problem by a system of algebraic equations. Finite difference methods are a versatile tool for scientists and for engineers. This updated book serves university students taking graduate-level coursework in heat transfer, as well as being an important reference for researchers and engineering. Features Provides a self-contained approach in finite difference methods for students and professionals Covers the use of finite difference methods in convective, conductive, and radiative heat transfer Presents numerical solution techniques to elliptic, parabolic, and hyperbolic problems Includes hybrid analytical–numerical approaches
Download or read book Kinetic Theory and Fluid Dynamics written by Yoshio Sone and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is intended to provide a comprehensive description of the rela tion between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, accord ing to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is di rectly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit.
Download or read book Lattice Gas Cellular Automata and Lattice Boltzmann Models written by Dieter A. Wolf-Gladrow and published by Springer. This book was released on 2004-10-19 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
Download or read book Lattice Boltzmann Method written by Abdulmajeed A. Mohamad and published by . This book was released on 2019 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.
Download or read book Computational Fluid Dynamics for Engineers written by Bengt Andersson and published by Cambridge University Press. This book was released on 2011-12-22 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations.
Download or read book Lattice Gas Methods written by Gary D. Doolen and published by MIT Press. This book was released on 1991 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on progress in applying the lattice gas approach to partial differential equations that arise in simulating the flow of fluids.Lattice gas methods are new parallel, high-resolution, high-efficiency techniques for solving partial differential equations. This volume focuses on progress in applying the lattice gas approach to partial differential equations that arise in simulating the flow of fluids. It introduces the lattice Boltzmann equation, a new direction in lattice gas research that considerably reduces fluctuations.The twenty-seven contributions explore the many available software options exploiting the fact that lattice gas methods are completely parallel, which produces significant gains in speed. Following an overview of work done in the past five years and a discussion of frontiers, the chapters describe viscosity modeling and hydrodynamic mode analyses, multiphase flows and porous media, reactions and diffusion, basic relations and long-time correlations, the lattice Boltzmann equation, computer hardware, and lattice gas applications.Gary D. Doolen is Acting Director of the Center for Nonlinear Studies at Los Alamos National Laboratory.
Download or read book Lattice Boltzmann Modeling written by Michael C. Sukop and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a basic introduction to Lattice Boltzmann models that emphasizes intuition and simplistic conceptualization of processes, while avoiding the complex mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those whose interest is in model application over detailed mathematics will find this a powerful 'quick start' guide. Example simulations, exercises, and computer codes are included.
Download or read book Lattice Boltzmann Method And Its Application In Engineering written by Zhaoli Guo and published by World Scientific. This book was released on 2013-03-25 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh.This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions.With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method.
Download or read book Lattice Gas Hydrodynamics written by J.-P. Rivet and published by Cambridge University Press. This book was released on 2005-09-15 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lattice gas hydrodynamics describes the approach to fluid dynamics using a micro-world constructed as an automaton universe, where the microscopic dynamics is based not on a description of interacting particles, but on the laws of symmetry and invariance of macroscopic physics. We imagine point-like particles residing on a regular lattice, where they move from node to node and undergo collisions when their trajectories meet. If the collisions occur according to some simple logical rules, and if the lattice has the proper symmetry, then the automaton shows global behavior very similar to that of real fluids. This book carries two important messages. First, it shows how an automaton universe with simple microscopic dynamics--the lattice gas--can exhibit macroscopic behavior in accordance with the phenomenological laws of classical physics. Second, it demonstrates that lattice gases have spontaneous microscopic fluctuations that capture the essentials of actual fluctuations in real fluids.
Download or read book The Mathematics of Diffusion written by John Crank and published by Oxford University Press. This book was released on 1979 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
Download or read book Annual Reviews of Computational Physics written by and published by . This book was released on 2001 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Engineering Index Annual written by and published by . This book was released on 1992 with total page 2264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its creation in 1884, Engineering Index has covered virtually every major engineering innovation from around the world. It serves as the historical record of virtually every major engineering innovation of the 20th century. Recent content is a vital resource for current awareness, new production information, technological forecasting and competitive intelligence. The world?s most comprehensive interdisciplinary engineering database, Engineering Index contains over 10.7 million records. Each year, over 500,000 new abstracts are added from over 5,000 scholarly journals, trade magazines, and conference proceedings. Coverage spans over 175 engineering disciplines from over 80 countries. Updated weekly.
Download or read book Fundamentals of Heat and Mass Transfer written by C. P. Kothandaraman and published by New Age International. This book was released on 2006 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: About the Book: Salient features: A number of Complex problems along with the solutions are provided Objective type questions for self-evaluation and better understanding of the subject Problems related to the practical aspects of the subject have been worked out Checking the authenticity of dimensional homogeneity in case of all derived equations Validation of numerical solutions by cross checking Plenty of graded exercise problems from simple to complex situations are included Variety of questions have been included for the clear grasping of the basic principles Redrawing of all the figures for more clarity and understanding Radiation shape factor charts and Heisler charts have also been included Essential tables are included The basic topics have been elaborately discussed Presented in a more better and fresher way Contents: An Overview of Heat Transfer Steady State Conduction Conduction with Heat Generation Heat Transfer with Extended Surfaces (FINS) Two Dimensional Steady Heat Conduction Transient Heat Conduction Convection Convective Heat Transfer Practical Correlation Flow Over Surfaces Forced Convection Natural Convection Phase Change Processes Boiling, Condensation, Freezing and Melting Heat Exchangers Thermal Radiation Mass Transfer
Download or read book Computational Heat Transfer written by Yogesh Jaluria and published by Routledge. This book was released on 2017-10-19 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition updated the material by expanding coverage of certain topics, adding new examples and problems, removing outdated material, and adding a computer disk, which will be included with each book. Professor Jaluria and Torrance have structured a text addressing both finite difference and finite element methods, comparing a number of applicable methods.
Download or read book Certified Reduced Basis Methods for Parametrized Partial Differential Equations written by Jan S Hesthaven and published by Springer. This book was released on 2015-08-20 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.
Download or read book Simplified And Highly Stable Lattice Boltzmann Method Theory And Applications written by Zhen Chen and published by World Scientific. This book was released on 2020-09-15 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique professional volume is about the recent advances in the lattice Boltzmann method (LBM). It introduces a new methodology, namely the simplified and highly stable lattice Boltzmann method (SHSLBM), for constructing numerical schemes within the lattice Boltzmann framework. Through rigorous mathematical derivations and abundant numerical validations, the SHSLBM is found to outperform the conventional LBM in terms of memory cost, boundary treatment and numerical stability.This must-have title provides every necessary detail of the SHSLBM and sample codes for implementation. It is a useful handbook for scholars, researchers, professionals and students who are keen to learn, employ and further develop this novel numerical method.
Download or read book The Lattice Boltzmann Method written by Timm Krüger and published by Springer. This book was released on 2016-11-07 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.