EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development of Conductive Polymer Actuators for Biomedical Applications

Download or read book Development of Conductive Polymer Actuators for Biomedical Applications written by Han-Kuan Tsai and published by . This book was released on 2007 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Biomedical Applications of Electroactive Polymer Actuators

Download or read book Biomedical Applications of Electroactive Polymer Actuators written by Federico Carpi and published by John Wiley & Sons. This book was released on 2009-04-13 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Giving fundamental information on one of the most promising families of smart materials, electroactive polymers (EAP) this exciting new titles focuses on the several biomedical applications made possible by these types of materials and their related actuation technologies. Each chapter provides a description of the specific EAP material and device configuration used, material processing, device assembling and testing, along with a description of the biomedical application. Edited by well-respected academics in the field of electroactive polymers with contributions from renowned international experts, this is an excellent resource for industrial and academic research scientists, engineers, technicians and graduate students working with polymer actuators or in the fields of polymer science.

Book Biomedical Applications of Polymeric Materials and Composites

Download or read book Biomedical Applications of Polymeric Materials and Composites written by Raju Francis and published by John Wiley & Sons. This book was released on 2016-12-19 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its content taken from only the very latest results, this is an extensive summary of the various polymeric materials used for biomedical applications. Following an introduction listing various functional polymers, including conductive, biocompatible and conjugated polymers, the book goes on to discuss different synthetic polymers that can be used, for example, as hydrogels, biochemical sensors, functional surfaces, and natural degradable materials. Throughout, the focus is on applications, with worked examples for training purposes as well as case studies included. The whole is rounded off with a look at future trends.

Book Soft Actuators

Download or read book Soft Actuators written by Kinji Asaka and published by Springer Nature. This book was released on 2019-08-28 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the second edition of Soft Actuators, originally published in 2014, with 12 chapters added to the first edition. The subject of this new edition is current comprehensive research and development of soft actuators, covering interdisciplinary study of materials science, mechanics, electronics, robotics, and bioscience. The book includes contemporary research of actuators based on biomaterials for their potential in future artificial muscle technology. Readers will find detailed and useful information about materials, methods of synthesis, fabrication, and measurements to study soft actuators. Additionally, the topics of materials, modeling, and applications not only promote the further research and development of soft actuators, but bring benefits for utilization and industrialization. This volume makes generous use of color figures, diagrams, and photographs that provide easy-to-understand descriptions of the mechanisms, apparatus, and motions of soft actuators. Also, in this second edition the chapters on modeling, materials design, and device design have been given a wider scope and made easier to comprehend, which will be helpful in practical applications of soft actuators. Readers of this work can acquire the newest technology and information about basic science and practical applications of flexible, lightweight, and noiseless soft actuators, which differ from conventional mechanical engines and electric motors. This new edition of Soft Actuators will inspire readers with fresh ideas and encourage their research and development, thus opening up a new field of applications for the utilization and industrialization of soft actuators.

Book Electrically Conductive Polymers and Polymer Composites

Download or read book Electrically Conductive Polymers and Polymer Composites written by Anish Khan and published by John Wiley & Sons. This book was released on 2018-05-29 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and up-to-date overview of the latest research trends in conductive polymers and polymer hybrids, summarizing recent achievements. The book begins by introducing conductive polymer materials and their classification, while subsequent chapters discuss the various syntheses, resulting properties and up-scaling as well as the important applications in biomedical and biotechnological fields, including biosensors and biodevices. The whole is rounded off by a look at future technological advances. The result is a well-structured, essential reference for beginners as well as experienced researchers.

Book Development and Characterization of Conducting Polymer Actuators

Download or read book Development and Characterization of Conducting Polymer Actuators written by Priam Vasudevan Pillai and published by . This book was released on 2011 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conducting polymers such as polypyrrole, polythiophene and polyaniline are currently studied as novel biologically inspired actuators. The actuation mechanism of these materials depends upon the motion of ions in and out of the polymer film during electrochemical cycling. The diffusion of ions into the bulk of the film causes the dynamic mechanical and electrical properties of the material to change during oxidation and reduction. The mechanism of this change is not fully understood, as it can depend on many different factors such as oxidation state, solvation of the film and the level of counter ion swelling. In-situ measurement of the dynamic mechanical compliance and electrical impedance of polypyrrole as a function of charge is difficult, since the compliance depends upon the excitation frequency as well as the electrochemical stimulus. Here, we have developed novel experimental techniques that use stochastic input waveforms to dynamically measure the compliance and impedance response of conducting polymers as a function of frequency and an electrochemical stimulus. A stochastic stress input signal with a bandwidth of 30 Hz is used, which allows us to compute the mechanical compliance transfer function of polypyrrole as function of the electrochemistry. The low frequency compliance changes between 50-80%, as charge is injected into polypyrrole in neat 1-butyl-3-methylimidazolium hexafluorophosphate. The compliance changes reversibly as ions diffuse in and out of the film, which indicates that the compliance depends upon the level of counter ion swelling. The effect of cationic and anionic charging on the polypyrrole compliance is demonstrated in multiple ionic/solvent combinations. The stochastic signals are also used to the characterize the isometric and isotonic responses of conducting polymer actuators. This technique is used to demonstrate the effect of temperature and solution conductivity on actuation and to develop methods that can be used to improve polymer actuator performance. Efficient techniques to incorporate functionalized carbon nanotubes into conducting polymers using layer by layer deposition and drop casting methods have been explored. These new composite materials and techniques significantly reduce creep, improve conductivity and increase stiffness of the polymer actuators.

Book Electroactive Polymer  EAP  Actuators as Artificial Muscles

Download or read book Electroactive Polymer EAP Actuators as Artificial Muscles written by Yoseph Bar-Cohen and published by SPIE Press. This book was released on 2004 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers the field of EAP with attention to all aspects and full infrastructure, including the available materials, analytical models, processing techniques, and characterization methods. This second edition covers advances in EAP in electric EAP, electroactive polymer gels, ionomeric polymer-metal composites, and carbon nanotube actuators.

Book Nanostructured Conductive Polymers

Download or read book Nanostructured Conductive Polymers written by Ali Eftekhari and published by John Wiley & Sons. This book was released on 2011-07-07 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a vital link between nanotechnology and conductive polymers, this book covers advances in topics of this interdisciplinary area. In each chapter, there is a discussion of current research issues while reviewing the background of the topic. The selection of topics and contributors from around the globe make this text an outstanding resource for researchers involved in the field of nanomaterials or polymer materials design. The book is divided into three sections: From Conductive Polymers to Nanotechnology, Synthesis and Characterization, and Applications.

Book Development and Modeling of Conducting Polymer Actuators and the Fabrication of a Conducting Polymer Based Feedback Loop

Download or read book Development and Modeling of Conducting Polymer Actuators and the Fabrication of a Conducting Polymer Based Feedback Loop written by Peter Geoffrey Alexander Madden and published by . This book was released on 2003 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conducting polymers as a class of materials can be used to build a diverse range of devices. Conducting polymer based actuators (muscles), transistors (neurons), strain gages (muscle spindles), force sensors (Golgi tendon organs), light emitting diodes, photodetectors (eyes), batteries and supercapacitors (energy storage), and chemical sensors (noses) can all be manufactured. The range of behaviors makes conducting polymers the only class of materials that might be able to mimic the full range of functions needed to build a truly lifelike artificial system. In this thesis, a conducting polymer actuator and conducting polymer strain gage are used for the first time to build a reflex or position feedback loop that rejects position disturbances. The successful operation of the conducting polymer based reflex loop is an important step towards building an all polymer reflex loop that is directly integrated into a bulk material. Such a reflex loop could be used to control position, to control force or to dynamically change the material stiffness and viscosity. In the course of the project, an improved understanding of conducting polymer actuators has led to mathematical descriptions of the charging and discharging of long linear actuators and to equations describing the deflection and force of three layer bending beam actuators. These equations can be used as design tools to build actuators that satisfy given performance requirements. Finally, the performance of the actuators has been related to specific material properties to help direct research into new conducting polymeric materials.

Book Conducting Polymer Based Nanocomposites

Download or read book Conducting Polymer Based Nanocomposites written by Ayesha Kausar and published by Elsevier. This book was released on 2021-04-28 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conducting Polymer-Based Nanocomposites: Fundamentals and Applications delivers an up-to-date overview on cutting-edge advancements in the field of nanocomposites derived from conjugated polymeric matrices. Design of conducting polymers and resultant nanocomposites has instigated significant addition in the field of modern nanoscience and technology. Recently, conducting polymer-based nanocomposites have attracted considerable academic and industrial research interest. The conductivity and physical properties of conjugated polymers have shown dramatic improvement with nanofiller addition. Appropriate fabrication strategies and the choice of a nanoreinforcement, along with a conducting matrix, may lead to enhanced physicochemical features and material performance. Substantial electrical conductivity, optical features, thermal stability, thermal conductivity, mechanical strength, and other physical properties of the conducting polymer-based nanocomposites have led to high-performance materials and high-tech devices and applications. This book begins with a widespread impression of state-of-the-art knowledge in indispensable features and processing of conducting polymer-based nanocomposites. It then discusses essential categories of conducting polymer-based nanocomposites such as polyaniline, polypyrrole, polythiophene, and derived nanomaterials. Subsequent sections of this book are related to the potential impact of conducting polymer-based nanocomposites in various technical fields. Significant application areas have been identified for anti-corrosion, EMI shielding, sensing, and energy device relevance. Finally, the book covers predictable challenges and future opportunities in the field of conjugated nanocomposites. Integrates the fundamentals of conducting polymers and a range of multifunctional applications Describes categories of essential conducting polymer-based nanocomposites for polyaniline, polypyrrole, polythiophene, and derivative materials Assimilates the significance of multifunctional nanostructured materials of nanocomposite nanofibers Portrays current and future demanding technological applications of conjugated polymer-based nanocomposites, including anti-corrosion coatings, EMI shielding, sensors, and energy production and storage devices

Book Development of 2D and 3D Conductive Biomaterial Composites for Use as Electromechanical Actuators

Download or read book Development of 2D and 3D Conductive Biomaterial Composites for Use as Electromechanical Actuators written by Sean Severt and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flexible and conductive biocompatible materials are attractive candidates for a wide range of biomedical applications including implantable electrodes, tissue engineering, and controlled drug delivery. Here we demonstrated that chemical and electrochemical polymerization techniques can be combined to create highly versatile silk-conducting polymer (silk-CP) composites with enhanced conductivity and electrochemical stability. Interpenetrating silk-CP composites were first generated via in situ deposition of polypyrrole during chemical polymerization of pyrrole. These composites were sufficiently conductive to serve as working electrodes for electropolymerization, allowing an additional layer of CP to be deposited on the surface. This two-step technique expanded the range of available polymers and dopants suitable for the synthesis of mechanically robust, biocompatible, and highly conductive silk-based materials. The sequential method was applied to 2D films, 3D sponge-like silk scaffolds, and electrospun silk fibers, allowing the fabrication of conductive materials with biomimetic architectures. The electrospun fibers were able to be prepared with a high degree of alignment and permeability that was conserved during modification with conducting polymers. These electrospun materials were utilized to fabricate electromechanical actuators. The mechanism, performance, and efficacy under extended cycling of the actuator devices were analyzed in biomimetic electrolyte solutions.

Book Biosynthetic Polymers for Medical Applications

Download or read book Biosynthetic Polymers for Medical Applications written by Laura Poole-Warren and published by Elsevier. This book was released on 2015-11-23 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biosynthetic Polymers for Medical Applications provides the latest information on biopolymers, the polymers that have been produced from living organisms and are biodegradable in nature. These advanced materials are becoming increasingly important for medical applications due to their favorable properties, such as degradability and biocompatibility. This important book provides readers with a thorough review of the fundamentals of biosynthetic polymers and their applications. Part One covers the fundamentals of biosynthetic polymers for medical applications, while Part Two explores biosynthetic polymer coatings and surface modification. Subsequent sections discuss biosynthetic polymers for tissue engineering applications and how to conduct polymers for medical applications. - Comprehensively covers all major medical applications of biosynthetic polymers - Provides an overview of non-degradable and biodegradable biosynthetic polymers and their medical uses - Presents a specific focus on coatings and surface modifications, biosynthetic hydrogels, particulate systems for gene and drug delivery, and conjugated conducting polymers

Book Development of Ionic Electroactive Actuators with Improved Interfacial Adhesion

Download or read book Development of Ionic Electroactive Actuators with Improved Interfacial Adhesion written by Aiva Simaite and published by . This book was released on 2015 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Onic electroactive polymer based artificial muscles are promising alternative to traditional actuators, especially where compliant muscle-like response is desirable. Among them, conducting polymer actuators (CPAs) are most promising for biomedical applications, where biocompatibility, compactness and accurate positioning is essential. Nevertheless, development of applicable devices is hold down by their low efficiency and fast performance deterioration. The absence of a tactile, force or position feed-back is another feature limiting the development of functional devices. The goal of this thesis is to develop a fabrication technique for conducting polymer based actuators that could be up-scalable and enable facile integration of sensory feedback. Inkjet printing is key technology in the field of defined polymer deposition as well as in fabrication of strain sensors. It is also one of the most promising alternatives to prevalent fabrication of conducting polymer actuators. Nevertheless, inkjet printed actuators were not yet realized due to rheological properties of conducting polymer solutions that challenge jetting and the complex solution - membrane interactions, that lead to poor adhesion or uncontrolled infiltration. In order to enable this fabrication method, hybrid ion-storing membranes were developed. Argon plasma induced grafting-to of hydrophilic macromonomer with limited-indepth deposition was used to obtain polyvinylidene fluoride (PVDF) membranes with hydrophilic upper surfaces and hydrophobic centre. Functionalized PVDF membranes were shown to withhold good adhesion to the conducting polymer films and preserve electrically insulating layer in between them. Hybrid membranes were demonstrated to be advantageous in fabrication of CPAs by drop casting and enable production of actuators with various morphologies. Furthermore, fabricated poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) based actuators demonstrated long lifetime with no signs of delamination as well as large strain of more than 0.6%. In addition, the complex nature of the physico-chemical mechanisms of the interactions between the polymer film and the porous membrane was better understood during this work. The conditions necessary in order to ensure strong adhesion as well as circumstances leading to uncontrolled infiltration were partially identified. These were used to set up limits to membrane preparation and polymer solution composition. Combining obtained knowledge with known requirements for inkjet printable solutions lead to the realization of the first inkjet printed PEDOT:PSS based ionic actuators.

Book Electromechanically Active Polymers

Download or read book Electromechanically Active Polymers written by Federico Carpi and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electroactive Polymer Gel Robots

Download or read book Electroactive Polymer Gel Robots written by Mihoko Otake and published by Springer Science & Business Media. This book was released on 2010-02-23 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: By the dawn of the new millennium, robotics has undergone a major tra- formation in scope and dimensions. This expansion has been brought about bythematurityofthe?eldandtheadvancesinitsrelatedtechnologies.From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities,providingsupportinservices,entertainment,education,heal- care, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across - verse research areas and scienti?c disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are pr- ing an abundant source of stimulation and insights for the ?eld of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their signi?cance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing ?eld.

Book Disposable Electrochemical Sensors for Healthcare Monitoring

Download or read book Disposable Electrochemical Sensors for Healthcare Monitoring written by Dr A. Pandikumar and published by Royal Society of Chemistry. This book was released on 2021-05-05 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Disposable electrodes have been widely used as a sensing platform in electrical and electrochemical sensors owing to the possibility of quantitative detection using clinical biomarkers with high precision, sensitivity and reproducibility, which are necessary for accurate diagnosis of the health condition of an individual. This book focusses on the emerging disposable electrochemical sensors in the health sector and the advancement of analytical devices to monitor diabetic, cancer and cardiovascular patients using different nanomaterials. It discusses the upcoming strategies, advantages and the limitations of the existing devices using disposable electrodes. Uniquely, it covers in-depth knowledge of mechanistic features of various designs of screen-printing electrodes and the material aspects required of sensors developed for the healthcare field. It also looks at the portable devices using a variety of materials and the future directions for research in this area. Appealing to the health care industry, this book is aimed at academic and research institutes at both the graduate and postgraduate level. The contributors are leading experts in the field and they are providing guidance for the next decade of research in the field of disposable electrochemical biosensors.

Book Polymer Electronics

    Book Details:
  • Author : Meng Hsin-Fei
  • Publisher : CRC Press
  • Release : 2013-02-19
  • ISBN : 9814364045
  • Pages : 267 pages

Download or read book Polymer Electronics written by Meng Hsin-Fei and published by CRC Press. This book was released on 2013-02-19 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental ma