EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development of a Regional Pavement Performance Database for the AASHTO Mechanistic empiricle  sic  Pavement Design Guide  Sensitivity analysis

Download or read book Development of a Regional Pavement Performance Database for the AASHTO Mechanistic empiricle sic Pavement Design Guide Sensitivity analysis written by Swetha Kesiraju and published by . This book was released on 2007 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development of a Regional Pavement Performance Database for the AASHTO Mechanistic empiricle  sic  Pavement Design Guide  Validation and local calibration

Download or read book Development of a Regional Pavement Performance Database for the AASHTO Mechanistic empiricle sic Pavement Design Guide Validation and local calibration written by Swetha Kesiraju and published by . This book was released on 2007 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development of a Regional Pavement Performance Database for the AASHTO Mechanistic empiricle  sic  Pavement Design Guide

Download or read book Development of a Regional Pavement Performance Database for the AASHTO Mechanistic empiricle sic Pavement Design Guide written by Swetha Kesiraju and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sensitivity Analysis of Rigid Pavement Design Inputs Using Mechanistic empirical Pavement Design Guide

Download or read book Sensitivity Analysis of Rigid Pavement Design Inputs Using Mechanistic empirical Pavement Design Guide written by Alper Guclu and published by . This book was released on 2005 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pavement design procedures, available in the literature, do not fully take advantage of mechanistic concepts, which make them heavily rely on empirical approaches. Because of the heavy dependence on empirical procedures, the existing design methodologies do not capture the actual behavior of Portland cement concrete (PCC) pavements. However, reliance on empirical solutions can be reduced by introducing mechanistic-empirical methods, which is now adopted in the newly released mechanistic-empirical pavement design guide (MEPDG). This new design procedure incorporates a wide range of input parameters associated with the mechanics of rigid pavements. To compare the sensitivity of these various input parameters on the performance of concrete pavements, two jointed plain concrete pavement (JPCP) sites were selected in Iowa. These two sections are also part of the Long Term Pavement Performance (LTPP) program where a long history of pavement performance data exists. Data obtained from the Iowa Department of Transportation (Iowa DOT) Pavement Management Information System (PMIS) and LTPP database were used to form two standard pavement sections for the comprehensive sensitivity analyses. The sensitivity analyses were conducted using the MEPDG software to study the effects of design input parameters on pavement performance of faulting, transverse cracking, and smoothness. Based on the sensitivity results, ranking of the rigid pavement input parameters were established and categorized from most sensitive to insensitive to help pavement design engineers to identify the level of importance of each input parameter. The curl/warp effective temperature difference (built-in curling and warping of the slabs) and PCC thermal properties are found to be the most sensitive input parameters. Based on the comprehensive sensitivity analyses, the idea of developing an expert system was introduced to help the pavement design engineers identify the input parameters that they can modify to satisfy the predetermined pavement performance criteria. Predicted pavement distresses using the MEPDG software for the two Iowa rigid pavement sites were compared against the measured pavement distresses obtained from the Iowa DOT's PMIS and comparison results are discussed in this study.

Book Preparation of the Implementation Plan of AASHTO Mechanistic empirical Pavement Design Guide  M EPDG  in Connecticut

Download or read book Preparation of the Implementation Plan of AASHTO Mechanistic empirical Pavement Design Guide M EPDG in Connecticut written by Iliya Yut and published by . This book was released on 2017 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Guide for the Local Calibration of the Mechanistic empirical Pavement Design Guide

Download or read book Guide for the Local Calibration of the Mechanistic empirical Pavement Design Guide written by and published by AASHTO. This book was released on 2010 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.

Book Database Development for an HMA Pavement Performance Analysis System

Download or read book Database Development for an HMA Pavement Performance Analysis System written by Robert L. Schmitt (Ph.D.) and published by . This book was released on 2008 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sensitivity Analysis and Calibration of the Alligator Cracking Model in the Mechanistic empirical Pavement Design Guide Using Regional Data

Download or read book Sensitivity Analysis and Calibration of the Alligator Cracking Model in the Mechanistic empirical Pavement Design Guide Using Regional Data written by Vivek Jha and published by . This book was released on 2009 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Implementation of the AASHTO Mechanistic empirical Pavement Design Guide and Software

Download or read book Implementation of the AASHTO Mechanistic empirical Pavement Design Guide and Software written by and published by . This book was released on 2014 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Mechanistic-Empirical Pavement Design Guide and AASHTOWare Pavement ME Design (TM) Software Overview -- Survey of Agency Pavement Design Practices -- Common Elements of Agency Implementation Plans -- Case Examples of Agency Implementation -- Conclusions.

Book Mechanistic empirical Data Collection Approach for Rigid Pavements

Download or read book Mechanistic empirical Data Collection Approach for Rigid Pavements written by César Iván Medina Chávez and published by . This book was released on 2006 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Flexible Pavement Design

Download or read book Flexible Pavement Design written by Ashraf Ayman Aguib and published by . This book was released on 2014 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: The new Mechanistic-Empirical Pavement Design Guide (MEPDG) provides a state- of-the-art and practice pavement design procedure that eradicates the AASHTO 1993 empirical design procedure deficiencies. Huge advancements with respect to traffic input, material characterization and environmental impact are incorporated in the MEPDG. The AASHTO 1993 design procedure is based on empirical equations derived from the AASHO Road Test conducted in the late 1950's in a test track in Ottawa, Illinois. The test provided very useful information for the design of pavement at that time. However, with the present advancement in materials and dramatic increase in traffic volumes, this empirical design procedure started to show massive drawbacks. The MEPDG is a more comprehensive design procedure that incorporates sophisticated models for pavement response calculation, material properties variations with respect to environmental conditions and pavement performance predictions. The mechanistic part of the design procedure is the pavement response calculation and the empirical part of the method is the pavement performance prediction. Incorporating these models allows the MEPDG of producing pavement design sections that are cost-effective and perform better than those designed using the AASHTO 1993 design procedure for a given life span. With the initial introduction of the MEPDG in 2004, almost every State Highway Agency (SHA) in the United States and several road authorities around the world exerted efforts to understand and plan to implement the MEPDG according to their own local conditions. It was hence found necessary to explore the new design procedure according to Egyptian local conditions. The objectives of the research is to prepare a body of accurate and readily usable environmental data for Egypt for MEPDG input, compare the effectiveness of both design methods and assess the sensitivity of MEPDG predicted performance with respect to variations in inputs. Weather data files for major Egyptian cities were extracted from available data sources and prepared for direct input in the MEPDG. The preparation of data was done using a computer application especially developed in this research program to comprehensively and rationally complete this task. A comparative study was then done between the two design methods. Five pavement sections were designed using the AASHTO 1993 design procedure and then evaluated using the MEPDG for three traffic levels. These five sections were chosen to best represent the majority of Egypt. A sensitivity analysis was then conducted to investigate the predicted behavior of fatigue cracking and rutting with respect to variations in environmental conditions, traffic levels, AC layer thickness and properties, granular base (GB) layer thickness and subgrade strength. Comparing both design methods revealed that pavements designed under the AASHTO 1993 do not perform equally at the end of their design life. Terminal Present Serviceability Index (PSI) values are different for different traffic levels and locations. Predicted fatigue cracking and rutting showed a similar trend to terminal PSI values. The AASHTO 1993 was also found to over-estimate pavement layers thicknesses. Predicted fatigue cracking showed high sensitivity to design inputs under the scope of the study. Environmental conditions and traffic loading were also found to be the most influential input parameters on the selected pavement performance indices. Unexpected results for predicted rutting lead to further investigation and MEDPG rutting prediction model was evaluated with respect to an Egyptian rutting prediction model. Rutting prediction model adopted by MEPDG produced lower values for permanent strain compare to the Egyptian rutting model and further calibration for the MEPDG rutting prediction model was found necessary.

Book Consideration of Preservation in Pavement Design and Analysis Procedures

Download or read book Consideration of Preservation in Pavement Design and Analysis Procedures written by and published by . This book was released on 2015 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: "TRB's National Cooperative Highway Research Program (NCHRP) Report 810: Consideration of Preservation in Pavement Design and Analysis Procedures explores the effects of preservation on pavement performance and service life and describes three different approaches for considering these effects in pavement design and analysis procedures. The report may serve as a basis for developing procedures for incorporating preservation in the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide: A Manual of Practice (MEPDG) and the AASHTOWare Pavement ME Design software. Initially, the scope of this project intended to develop procedures for incorporating pavement preservation treatments into the MEPDG design analysis process that would become part of the MEPDG Manual of Practice. However, it was determined that sufficient data were not available to support the development of such procedures. Appendices A through I are available online only." --

Book Implementation of the AASHTO Mechanistic Empirical Design Guide  AASHTOWare Pavement ME Design  for Pavement Rehabilitation

Download or read book Implementation of the AASHTO Mechanistic Empirical Design Guide AASHTOWare Pavement ME Design for Pavement Rehabilitation written by Shuvo Islam and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The AASHTOWare Pavement ME Design (PMED) is a novel design method for new and rehabilitated pavement designs based on mechanistic-empirical design principles. The design process includes several empirical models calibrated with pavement performance data from pavement sections throughout the United States. Improved accuracy of the design process requires that the models be calibrated to local conditions. Therefore, the objective of this study was to implement the AASHTOWare PMED software for rehabilitated pavement design by performing local calibration for state-managed roads in Kansas, New Jersey, and Maine. Transfer functions for translating mechanistic pavement responses into visible distresses embedded in the AASHTOWare PMED software were locally calibrated to eliminate bias and reduce the standard error for rehabilitated pavements in Kansas and New York. Calibration was performed using version 2.5 and then verified with version 2.6.2.2, which was released in September 2022. Rehabilitated pavement sections included asphalt concrete (AC) over AC in Kansas and the New England region and jointed plain concrete pavement (JPCP) sections in Kansas. Because the PMED software requires periodic recalibration of the prediction models to account for improvements in the models, changes in agency design and construction strategies, and updates in performance data, this study also developed an automated technique for calibrating the AASHTOWare PMED software performance models. This automated methodology incorporated robust sampling techniques to verify calibrated PMED models. In addition, statistical equivalence testing was incorporated to ensure PMED-predicted performance results tended to agree with the in-situ data. A comparison of results for the AASHTOWare PMED versions 2.5 and 2.6.2.2 showed that most predicted distress values in Kansas remained the same, except for the predicted AC total fatigue cracking, specifically asphalt bottom-up fatigue cracking. For both distress types, slightly higher values were obtained with version 2.6.2.2. Results of three candidate crack tests showed that IDEAL-CT test results can be used as cracking-resistance criterion for mixtures in Kansas. The rehabilitation models were also successfully calibrated for the New England region.

Book Implementing the AASHTO Mechanistic empirical Pavement Design Guide in Missouri

Download or read book Implementing the AASHTO Mechanistic empirical Pavement Design Guide in Missouri written by and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume I summarizes the entire research effort and documents findings from a review of MEPDG-related literature, an assessment of MoDOT's MEPDG input data needs, MoDOT's laboratory and field testing efforts, sensitivity analysis using MoDOT specific inputs, and model validation and calibration tasks. In addition, Volume I also discusses the steps MoDOT could undertake in the future to fully implement the MEPDG. Volume II presents a section-by-section comparison of the predicted and measured distresses for MoDOT-specific LTPP and State Pavement Management System sections for HMA pavements and JPCP.

Book

    Book Details:
  • Author :
  • Publisher :
  • Release : 1976
  • ISBN :
  • Pages : 202 pages

Download or read book written by and published by . This book was released on 1976 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: