EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development of a Partially Premixed Combustion Model for a Diesel Engine Using Multiple Injection Strategies

Download or read book Development of a Partially Premixed Combustion Model for a Diesel Engine Using Multiple Injection Strategies written by Rene Thygesen and published by Logos Verlag Berlin GmbH. This book was released on 2012 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to fulfil future emissions legislations, new combustion systems are to be investigated. One way of improving exhaust emissions is the application of multiple injection strategies and conventional or partially premixed combustion conditions to a Diesel engine. The application of numerical techniques as CFD supports and improves the quality of engine developments. Unfortunately, current spray and combustion models are not accurate enough to simulate multiple injection systems, being in this way a topic of research. The goal of this study was the development of a novel simulation method for the investigation of Diesel engines operated with multiple injection strategies and different combustion modes. The first part of this work focused in improving the spray modelling. The inform ation of 3D CFD simulations of the injector nozzle was introduced in the spray simulation as boundary conditions developing coupling subroutines for this issue. The atomisation modelling was also improved using validated presumed droplet size distributions. Moreover, to avoid the simulation of the injector nozzle for every investigated operating point, a novel interpolating tool was developed in order to create spray boundary conditions based on few 3D CFD simulations of the nozzle under certain initial and boundary conditions. The second part of this thesis dealt with the combustion modelling of Diesel engines. For this issue, a laminar flamelet approach called Representative Interactive Flamelet model (RIF) was selected and implemented. Afterwards, an extended combustion model based on RIF was developed in order to take into account multiple injection strategies. Finally, this new model was validated with a wide range of operating points: applying multiple injection strategies under conventional and partially premixed combustion conditions.

Book Advanced Direct Injection Combustion Engine Technologies and Development

Download or read book Advanced Direct Injection Combustion Engine Technologies and Development written by H Zhao and published by Elsevier. This book was released on 2009-12-18 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 2 of the two-volume set Advanced direct injection combustion engine technologies and development investigates diesel DI combustion engines, which despite their commercial success are facing ever more stringent emission legislation worldwide. Direct injection diesel engines are generally more efficient and cleaner than indirect injection engines and as fuel prices continue to rise DI engines are expected to gain in popularity for automotive applications. Two exclusive sections examine light-duty and heavy-duty diesel engines. Fuel injection systems and after treatment systems for DI diesel engines are discussed. The final section addresses exhaust emission control strategies, including combustion diagnostics and modelling, drawing on reputable diesel combustion system research and development. Investigates how HSDI and DI engines can meet ever more stringent emission legislation Examines technologies for both light-duty and heavy-duty diesel engines Discusses exhaust emission control strategies, combustion diagnostics and modelling

Book Effect of Premixed Fuel Preparation for Partially Premixed Combustion with a Low Octane Gasoline on a Light Duty Multi Cylinder Compression Ignition Engine

Download or read book Effect of Premixed Fuel Preparation for Partially Premixed Combustion with a Low Octane Gasoline on a Light Duty Multi Cylinder Compression Ignition Engine written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to create a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from -91° to -324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection GTP-15-1067, Dempsey 2 pressures. The gasoline used in this study has relatively high fuel reactivity with a research octane number of 68. The results of this experimental campaign indicate that the highest brake thermal efficiency and lowest emissions are achieved simultaneously with the earliest pilot injection timings (i.e., during the intake stroke).

Book Gasoline Compression Ignition Technology

Download or read book Gasoline Compression Ignition Technology written by Gautam Kalghatgi and published by Springer Nature. This book was released on 2022-01-17 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on gasoline compression ignition (GCI) which offers the prospect of engines with high efficiency and low exhaust emissions at a lower cost. A GCI engine is a compression ignition (CI) engine which is run on gasoline-like fuels (even on low-octane gasoline), making it significantly easier to control particulates and NOx but with high efficiency. The state of the art development to make GCI combustion feasible on practical vehicles is highlighted, e.g., on overcoming problems on cold start, high-pressure rise rates at high loads, transients, and HC and CO emissions. This book will be a useful guide to those in academia and industry.

Book Low Load Operation in a Light duty Diesel Engine Using High Octane Fuels and Additives

Download or read book Low Load Operation in a Light duty Diesel Engine Using High Octane Fuels and Additives written by and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present study focuses on multi-cylinder, light-duty engine operation at light load conditions while maintaining efficiency and emissions. As the same engine should be able to run at high load conditions as well, the choice of fuel and combustion strategy should support over a wide range of speed-load operation. This is achieved by utilizing partially premixed combustion [PPC] of gasoline, which is a combination of homogeneous mixture operation of the fully premixed charge and a direct injection, where the fuel is injected during or slightly before the combustion event, like in standard diesel combustion. The engine load in gasoline PPC operation is controlled by limiting the number of injections and injected fuel amount, whereas desirable combustion phasing is achieved by controlling the injection timing. The effect of injector included angle was also studied in the present work with the objective of operating at the lowest possible load in this type of combustion. As the fuel effects also significantly alter the combustion behavior due to changes in the auto-ignition characteristics, the current study focused on low load operation using various RON gasoline fuels in a multi-cylinder engine. The use of a 2-EthylHexyl Nitrate [EHN] cetane improver is also emphasized in this research for operation at light load conditions with lower octane fuels. By changing the amount of cetane improver in standard gasoline, it is possible to alter the octane number of the fuel and potentially resolve engine startability issues. A reaction kinetics model for EHN was developed and used to study HCCI operation in a light-duty, single-cylinder engine at light load conditions. 96 RON gasoline was used as the base fuel. The results indicate that the current EHN mechanism predicts combustion phasing and nitrogen oxides [NOx] and carbon-monoxide [CO] emission trends of available HCCI experiments fairly well. Direct injection engine experiments performed at the Argonne National Laboratory with 87 AKI gasoline and 0.4% by volume of EHN additive were also used to validate the newly developed EHN mechanism. An additive-PRF map was generated that provides information about the effective PRF number of mixtures of gasoline and EHN additive.

Book Vente aux ench  res publiques    Paris de tableaux

Download or read book Vente aux ench res publiques Paris de tableaux written by and published by . This book was released on 1960 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advancement in Oxygenated Fuels for Sustainable Development

Download or read book Advancement in Oxygenated Fuels for Sustainable Development written by Niraj Kumar and published by Elsevier. This book was released on 2022-11-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Oxygenated Fuels for Sustainable Development: Feedstocks and Precursors for Catalysts Synthesis provides a roadmap to the sustainable implementation of oxygenated fuels in internal combustion engines through sustainable production, smart distribution and effective utilization. Focusing on the sustainability of feedstocks, the book assesses availability, emissions impact and reduction potential, and biodiversity and land utilization impact. Existing technologies and supply chains are reviewed, and recommendations are provided on how to sustainably implement or update these technologies, including for rural communities. Furthermore, effective supply and distribution network designs are provided alongside methods for monitoring and assessing their sustainability, accounting for social, economic, environmental and ecological factors. This book guides readers through every aspect of the production and commercialization of sustainable oxygenated fuels for internal combustion engines and their implementation across the global transport industry. Provides multilevel perspectives on how to facilitate the sustainable production of oxygenated fuel and develop new indices for measuring the effectiveness and sustainability of implementation Recommends a framework and criteria for assessing the suitability, sustainability, and environmental benefits of oxygenated biofuels Describes the fuel properties of all oxygenated fuels and their performance in unmodified and enhanced CI and SI engines

Book Nonlinear Model Predictive Control of Combustion Engines

Download or read book Nonlinear Model Predictive Control of Combustion Engines written by Thivaharan Albin Rajasingham and published by Springer Nature. This book was released on 2021-04-27 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the nonlinear model predictive control (NMPC) concept for application to innovative combustion engines. Readers can use this book to become more expert in advanced combustion engine control and to develop and implement their own NMPC algorithms to solve challenging control tasks in the field. The significance of the advantages and relevancy for practice is demonstrated by real-world engine and vehicle application examples. The author provides an overview of fundamental engine control systems, and addresses emerging control problems, showing how they can be solved with NMPC. The implementation of NMPC involves various development steps, including: • reduced-order modeling of the process; • analysis of system dynamics; • formulation of the optimization problem; and • real-time feasible numerical solution of the optimization problem. Readers will see the entire process of these steps, from the fundamentals to several innovative applications. The application examples highlight the actual difficulties and advantages when implementing NMPC for engine control applications. Nonlinear Model Predictive Control of Combustion Engines targets engineers and researchers in academia and industry working in the field of engine control. The book is laid out in a structured and easy-to-read manner, supported by code examples in MATLAB®/Simulink®, thus expanding its readership to students and academics who would like to understand the fundamental concepts of NMPC. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Book Diesel Engine Reference Book

Download or read book Diesel Engine Reference Book written by Bernard Challen and published by Butterworth-Heinemann. This book was released on 1999 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference work covering the design and applications of diesel engines of all sizes. The text uses easily understood language and a practical approach to explore aspects of diesel engineering such as thermodynamics modelling, long-term use, applications and condition monitoring.

Book Advances in Compression Ignition Natural Gas     Diesel Dual Fuel Engines

Download or read book Advances in Compression Ignition Natural Gas Diesel Dual Fuel Engines written by Hongsheng Guo and published by Frontiers Media SA. This book was released on 2021-03-23 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines

Download or read book Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines written by Jihad Badra and published by Elsevier. This book was released on 2022-01-05 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines summarizes recent developments in Artificial Intelligence (AI)/Machine Learning (ML) and data driven optimization and calibration techniques for internal combustion engines. The book covers AI/ML and data driven methods to optimize fuel formulations and engine combustion systems, predict cycle to cycle variations, and optimize after-treatment systems and experimental engine calibration. It contains all the details of the latest optimization techniques along with their application to ICE, making it ideal for automotive engineers, mechanical engineers, OEMs and R&D centers involved in engine design. Provides AI/ML and data driven optimization techniques in combination with Computational Fluid Dynamics (CFD) to optimize engine combustion systems Features a comprehensive overview of how AI/ML techniques are used in conjunction with simulations and experiments Discusses data driven optimization techniques for fuel formulations and vehicle control calibration

Book Assessment of Fuel Economy Technologies for Light Duty Vehicles

Download or read book Assessment of Fuel Economy Technologies for Light Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2011-06-03 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.

Book A Partially Premixed Combustion Application for Power Improvement in Military Diesel Engines

Download or read book A Partially Premixed Combustion Application for Power Improvement in Military Diesel Engines written by Michael D. Walker and published by . This book was released on 2018 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to increasing weight in military platforms, engine power needs to be increased in order to maintain performance. Diesel engine power is limited by soot formation, which is an indicator of incomplete fuel combustion due to lack of oxygen and poor mixing of the fuel and air. Once the soot limit is reached in a conventional diesel engine, further fuel increases will not result in more engine power since both the time for combustion (i.e. engine RPM) and oxygen are limited. An alternative approach is needed to both deliver and convert fuel energy in a diesel engine’s combustion chamber. Partially Premixed Combustion (PPC) allows for better mixing of the air and fuel in the combustion chamber, leading to lower combustion temperatures and higher flame speed (shorter burn duration) as compared to conventional diesel combustion. PPC delivers additional fuel to the combustion chamber in internal combustion engines through the air intake system in addition to the in-cylinder (i.e. combustion chamber) injection event, allowing for increased power opportunities. This project will improve the specific power gains in three distinct engines by retrofitting each with port injection to achieve PPC. This project fundamentally characterizes achievable power gains in a flexible Waukesha Diesel CFR research engine that allows for the manipulation of combustion phasing-timing, compression ratio (CR), and maximum baseline load. The conditions to achieve optimal combustion phasing will be determined. Fuels evaluated include conventional Navy JP-5 and less reactive, non-JP-5 fuels via port injection (potentially leading to increased pre-mixing with further power gains). In essence, this study sought to explore whether or not a two-fuel PPC approach might be worth the additional fuel complexity when compared to a conventional diesel approach or a single-fuel PPC approach, based on power improvements from the high load extension of the exhaust sooting limit. Based on these results, PPC was then applied to a small Navy diesel generator, and Marine Corps special operations Humvee engine in order to quantify actual practical power gains, using both single and dual fuel approaches. In the Waukesha CFR engine, it was seen that power levels were then able to increase from -2 to 27% (at CR 21.5) over conventional diesel combustion without a soot opacity penalty. In the Yanmar L100V6 engine-generator, power levels of 9.3 kW to 11.3 kW were achieved compared to 8.5 kW at conventional operation without a soot penalty. In the Humvee engine, power improvements of 7% and 8% were shown with JP-5 and iso-octane. Early heat release behavior was seen with both JP-5 and iso-octane, leading to longer burn durations and less soot-reduction benefit than expected.

Book Advanced Combustion for Sustainable Transport

Download or read book Advanced Combustion for Sustainable Transport written by Avinash Kumar Agarwal and published by Springer Nature. This book was released on 2021-12-12 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on advanced combustion technologies currently employed in internal combustion engines. It discusses different strategies for improving conventional diesel combustion. The volume includes chapters on low-temperature combustion techniques of compression-ignition engines which results in significant reduction of NOx and soot emissions. The content also highlights newly evolved gasoline compression technology and optical techniques in advanced gasoline direct injection engines. the research and its outcomes presented here highlight advancements in combustion technologies, analysing various issues related to in-cylinder combustion, pollutant formation and alternative fuels. This book will be of interest to those in academia and industry involved in fuels, IC engines, engine combustion research.

Book Computational Optimization of Internal Combustion Engines

Download or read book Computational Optimization of Internal Combustion Engines written by Yu Shi and published by Springer Science & Business Media. This book was released on 2011-06-22 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Optimization of Internal Combustion Engines presents the state of the art of computational models and optimization methods for internal combustion engine development using multi-dimensional computational fluid dynamics (CFD) tools and genetic algorithms. Strategies to reduce computational cost and mesh dependency are discussed, as well as regression analysis methods. Several case studies are presented in a section devoted to applications, including assessments of: spark-ignition engines, dual-fuel engines, heavy duty and light duty diesel engines. Through regression analysis, optimization results are used to explain complex interactions between engine design parameters, such as nozzle design, injection timing, swirl, exhaust gas recirculation, bore size, and piston bowl shape. Computational Optimization of Internal Combustion Engines demonstrates that the current multi-dimensional CFD tools are mature enough for practical development of internal combustion engines. It is written for researchers and designers in mechanical engineering and the automotive industry.

Book Progress in Combustion Diagnostics  Science and Technology

Download or read book Progress in Combustion Diagnostics Science and Technology written by Paul Medwell and published by MDPI. This book was released on 2020-03-25 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The role that combustion plays in the world’s energy systems will continue to evolve with the changes in technological demands. For example, the challenges that we face today are more focused on the conservation of energy and addressing environmental concerns, which together necessitate cleaner and more efficient combustion processes using a range of fuel sources. This book includes contributions to highlight the recent progress in theory and experiments, development, and demonstration of technologies and systems involving combustion processes, for the production, storage, use, and conservation of energy.

Book Feasibility and Limitations of Premixed Diesel Combustion in Multi cylinder Engines

Download or read book Feasibility and Limitations of Premixed Diesel Combustion in Multi cylinder Engines written by Guntram Arnulf Lechner and published by . This book was released on 2003 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: