EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development of a MEMS Gyroscope for Absolute Angle Measurement

Download or read book Development of a MEMS Gyroscope for Absolute Angle Measurement written by Damrongrit Piyabongkarn and published by . This book was released on 2004 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Whole Angle MEMS Gyroscopes

Download or read book Whole Angle MEMS Gyroscopes written by Doruk Senkal and published by John Wiley & Sons. This book was released on 2020-05-11 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the mathematical framework, technical language, and control systems know-how needed to design, develop, and instrument micro-scale whole-angle gyroscopes This comprehensive reference covers the technical fundamentals, mathematical framework, and common control strategies for degenerate mode gyroscopes, which are used in high-precision navigation applications. It explores various energy loss mechanisms and the effect of structural imperfections, along with requirements for continuous rate integrating gyroscope operation. It also provides information on the fabrication of MEMS whole-angle gyroscopes and the best methods of sustaining oscillations. Whole-Angle Gyroscopes: Challenges and Opportunities begins with a brief overview of the two main types of Coriolis Vibratory Gyroscopes (CVGs): non-degenerate mode gyroscopes and degenerate mode gyroscopes. It then introduces readers to the Foucault Pendulum analogy and a review of MEMS whole angle mode gyroscope development. Chapters cover: dynamics of whole-angle coriolis vibratory gyroscopes; fabrication of whole-angle coriolis vibratory gyroscopes; energy loss mechanisms of coriolis vibratory gyroscopes; and control strategies for whole-angle coriolis vibratory gyro- scopes. The book finishes with a chapter on conventionally machined micro-machined gyroscopes, followed by one on micro-wineglass gyroscopes. In addition, the book: Lowers barrier to entry for aspiring scientists and engineers by providing a solid understanding of the fundamentals and control strategies of degenerate mode gyroscopes Organizes mode-matched mechanical gyroscopes based on three classifications: wine-glass, ring/disk, and mass spring mechanical elements Includes case studies on conventionally micro-machined and 3-D micro-machined gyroscopes Whole-Angle Gyroscopes is an ideal book for researchers, scientists, engineers, and college/graduate students involved in the technology. It will also be of great benefit to engineers in control systems, MEMS production, electronics, and semi-conductors who work with inertial sensors.

Book Inertial MEMS

Download or read book Inertial MEMS written by Volker Kempe and published by Cambridge University Press. This book was released on 2011-02-17 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical and systematic overview of the design, fabrication and test of MEMS-based inertial sensors, this comprehensive and rigorous guide shows you how to analyze and transform application requirements into practical designs, and helps you to avoid potential pitfalls and to cut design time. With this book you'll soon be up to speed on the relevant basics, including MEMS technologies, packaging, kinematics and mechanics, and transducers. You'll also get a thorough evaluation of different approaches and architectures for design and an overview of key aspects of testing and calibration. Unique insights into the practical difficulties of making sensors for real-world applications make this up-to-date description of the state of the art in inertial MEMS an ideal resource for professional engineers in industry as well as students looking for a complete introduction to the area.

Book Development of a Self calibrated Mems Gyrocompass for North finding and Tracking

Download or read book Development of a Self calibrated Mems Gyrocompass for North finding and Tracking written by Igor Prikhodko and published by . This book was released on 2013 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Ph. D. dissertation presents development of a microelectromechanical (MEMS) gyrocompass for north-finding and north-tracking applications. The central part of this work enabling these applications is control and self-calibration architectures for drift mitigation over thermal environments, validated using a MEMS quadruple mass gyroscope. The thesis contributions are the following: Adapted and implemented bias and scale-factor drifts compensation algorithm relying on temperature self-sensing for MEMS gyroscopes with high quality factors. The real-time self-compensation reduced a total bias error to 2°/hr and a scale-factor error to 500 ppm over temperature range of 25° C to 55° C (on par with the state-of-the-art). Adapted and implemented a scale-factor self-calibration algorithm previously employed for macroscale hemispherical resonator gyroscope to MEMS Coriolis vibratory gyroscopes. An accuracy of 100 ppm was demonstrated by simultaneously measuring the true and estimated scale-factors over temperature variations (on par with the state-of-the art). Demonstrated north-finding accuracy satisfying a typical mission requirement of 4 meter target location error at 1 kilometer stand-o distance (on par with a GPS accuracy). Analyzed north-finding mechanizations trade-offs for MEMS vibratory gyroscopes and demonstrated measurements of the Earth's rotation (15° /hr). Demonstrated, for the first time, an angle measuring MEMS gyroscope operation for north-tracking applications in a ±ł500 °/s rate range and 100 Hz bandwidth, eliminating both bandwidth and range constraints of conventional open-loop Coriolis vibratory gyroscopes. Investigated hypothesis that surface-tension driven glass-blowing microfabrication can create highly spherical shells for 3-D MEMS. Without any trimming or tuning of the natural frequencies, a 1 MHz glass-blown 3-D microshell resonator demonstrated a 0.63 % frequency mismatch between two degenerate 4-node wineglass modes. Multi-axis rotation detection for nuclear magnetic resonance (NMR) gyroscope was proposed and developed. The analysis of cross-axis sensitivities for NMR gyroscope was performed. The framework for the analysis of NMR gyroscope dynamics for both open loop and closed loop modes of operation was developed.

Book Advances in Gyroscope Technologies

Download or read book Advances in Gyroscope Technologies written by Mario N. Armenise and published by Springer Science & Business Media. This book was released on 2010-11-22 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph collects and critically reviews the main results obtained by the scientific community in gyroscope technologies research field. It describes architectures, design techniques and fabrication technology of angular rate sensors proposed in literature. MEMS, MOEMS, optical and mechanical technologies are discussed together with achievable performance. The book also consideres future research trends aimed to cover special applications. The book is intended for researchers and Ph.D. students interested in modelling, design and fabrication of gyros. The book may be a useful education support in some university courses focused on gyro technologies.

Book Micromanufacturing and Nanotechnology

Download or read book Micromanufacturing and Nanotechnology written by Nitaigour P. Mahalik and published by Springer Science & Business Media. This book was released on 2006 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micromanufacturing and Nanotechnology is an emerging technological infrastructure and process that involves manufacturing of products and systems at the micro and nano scale levels. Development of micro and nano scale products and systems are underway due to the reason that they are faster, accurate and less expensive. Moreover, the basic functional units of such systems possesses remarkable mechanical, electronic and chemical properties compared to the macro-scale counterparts. Since this infrastructure has already become the prefered choice for the design and development of next generation products and systems it is now necessary to disseminate the conceptual and practical phenomenological know-how in a broader context. This book incorporates a selection of research and development papers. Its scope is the history and background, underlynig design methodology, application domains and recent developments.

Book MEMS Vibratory Gyroscopes

Download or read book MEMS Vibratory Gyroscopes written by Cenk Acar and published by Springer Science & Business Media. This book was released on 2008-12-16 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: MEMS Vibratory Gyroscopes provides a solid foundation in the theory and fundamental operational principles of micromachined vibratory rate gyroscopes, and introduces structural designs that provide inherent robustness against structural and environmental variations. In the first part, the dynamics of the vibratory gyroscope sensing element is developed, common micro-fabrication processes and methods commonly used in inertial sensor production are summarized, design of mechanical structures for both linear and torsional gyroscopes are presented, and electrical actuation and detection methods are discussed along with details on experimental characterization of MEMS gyroscopes. In the second part, design concepts that improve robustness of the micromachined sensing element are introduced, supported by constructive computational examples and experimental results illustrating the material.

Book Advanced Control Design of MEMS Vibratory Gyroscopes

Download or read book Advanced Control Design of MEMS Vibratory Gyroscopes written by Juntao Fei and published by . This book was released on 2011-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: MEMS (Micro Electro Mechanical Systems) technologies were developed by applying semiconductor microfabrication technologies to make three-dimensional microstructures and mechanical systems. MEMS technologies offer the advantages of batch fabrication of numbers of devices as well as an ability to integrate multiple functional units in a small area, which is important for developing smart and sophisticated devices. Gyroscopes are commonly used sensors for measuring angular velocity in many areas of applications such as navigation, homing, and control stabilisation. Fabrication imperfections and thermal, mechanical noise may hinder the measurement of angular velocity of MEMS gyroscope. This book presents a comprehensive treatment of the analysis and advanced control design of MEMS gyroscope for the problem of angular velocity measurement and minimisation of the cross coupling between two axes.

Book Toward Inertial Navigation on Chip

Download or read book Toward Inertial Navigation on Chip written by Haoran Wen and published by Springer Nature. This book was released on 2019-09-14 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis develops next-generation multi-degree-of-freedom gyroscopes and inertial measurement units (IMU) using micro-electromechanical-systems (MEMS) technology. It covers both a comprehensive study of the physics of resonator gyroscopes and novel micro/nano-fabrication solutions to key performance limits in MEMS resonator gyroscopes. Firstly, theoretical and experimental studies of physical phenomena including mode localization, nonlinear behavior, and energy dissipation provide new insights into challenges like quadrature errors and flicker noise in resonator gyroscope systems. Secondly, advanced designs and micro/nano-fabrication methods developed in this work demonstrate valuable applications to a wide range of MEMS/NEMS devices. In particular, the HARPSS+ process platform established in this thesis features a novel slanted nano-gap transducer, which enabled the first wafer-level-packaged single-chip IMU prototype with co-fabricated high-frequency resonant triaxial gyroscopes and high-bandwidth triaxial micro-gravity accelerometers. This prototype demonstrates performance amongst the highest to date, with unmatched robustness and potential for flexible substrate integration and ultra-low-power operation. This thesis shows a path toward future low-power IMU-based applications including wearable inertial sensors, health informatics, and personal inertial navigation.

Book Embedded Systems and Robotics with Open Source Tools

Download or read book Embedded Systems and Robotics with Open Source Tools written by Nilanjan Dey and published by CRC Press. This book was released on 2018-09-03 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Embedded Systems and Robotics with Open-Source Tools provides easy-to-understand and easy-to-implement guidance for rapid prototype development. Designed for readers unfamiliar with advanced computing technologies, this highly accessible book: Describes several cutting-edge open-source software and hardware technologies Examines a number of embedded computer systems and their practical applications Includes detailed projects for applying rapid prototype development skills in real time Embedded Systems and Robotics with Open-Source Tools effectively demonstrates that, with the help of high-performance microprocessors, microcontrollers, and highly optimized algorithms, one can develop smarter embedded devices.

Book Mechanical Design  Dynamics  and Control of Micro Vibratory Gyroscopes

Download or read book Mechanical Design Dynamics and Control of Micro Vibratory Gyroscopes written by Seyed Parsa Taheri Tehrani and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro-machined vibratory gyroscopes are very small devices (up to a few millimeters in dimension) that work based on Coriolis force coupling between two resonance modes. The small size, low power consumption, and cheap price make these sensors popular in automotive, gaming, smart phones, and robotics industries. These sensors referred to as MEMS (microelectromechanical system) gyroscopes are currently not used for navigation applications because due to their miniature size and imperfections in fabrication methods they do not have enough accuracy. In this thesis, we present methods in design and control algorithms for MEMS vibratory gyroscopes to cancel the effect of imperfections in fabrication and improve gyroscopes' performance. First chapter of this thesis is an introduction on MEMS vibratory gyroscopes and their principles and standard operations modes.The second chapter presents the structural design and analysis of a single-structure 3-axis MEMS gyroscope. The gyroscope has four resonant modes of interest and uses a decoupling mechanism whereby auxiliary masses are used to actuate the drive mode of the gyroscope in order to reduce drive-force coupling to sense modes' motion (one of the sources of errors in MEMS gyroscopes). The use of auxiliary masses results in a two degree-of-freedom (DOF) mechanism of the drive mode. To compare the effectiveness of using auxiliary masses two gyroscope types has been design one actuated from auxiliary masses (type A) and one actuated from major masses (type B). The two designs are simulated analytically to study the displacement of each mass in each design while comparing the force required to achieve that displacement for drive mode. Experimental data from fabricated devices show how using auxiliary masses will decrease drive force coupling and as a result improve the gyroscope's performance. Third chapter describes the operation of a high quality factor gyroscope in various regimes where electromechanical nonlinearities introduce different forms of amplitude-frequency (A-f) dependence. Experiments are conducted using an epitaxially-encapsulated 2 x 2 mm2 quad-mass gyroscope (QMG) with a quality factor of 85,000. The device exhibits third-order Duffing nonlinearity at low bias voltages (15 V) due to the mechanical nonlinearity in the flexures and at high bias voltages (35 V) due to third-order electrostatic nonlinearity. At intermediate voltages (26 V), these third-order nonlinearities cancel and the amplitude-frequency dependence is greatly reduced. A model is developed to demonstrate the connection between the electromechanical nonlinearities and the amplitude-frequency dependence, also known as the backbone curve. Gyroscope operation is demonstrated in each nonlinear operating regime and the key performance measures of the gyroscope's performance, angle random walk (ARW) and bias instability, are measured as a function of drive-mode vibration amplitude. While the bias instability is nearly independent of the drive-mode’s nonlinearity, we find that ARW increases when the third-order nonlinearities are minimized, and the decrease in ARW due to increase of amplitude is independent of drive mode's type of nonlinearity.In the fourth chapter we present a direct angle measurement method in gyroscopes. Towards the objective of direct angle measurement using a rate integrating gyroscope (RIG) without a minimum rate threshold and performance limited only by electrical and mechanical thermal noise, in this chapter we present the implementation of a generalized electronic feedback method for the compensation of MEMS gyroscope damping asymmetry (anisodamping) and stiffness asymmetry (anisoelasticity) on a stand-alone digital signal processing (DSP) platform. Using the new method, the precession angle dependent bias error and minimum rate threshold, two issues identified by Lynch for a MEMS RIG due to anisodamping are overcome. To minimize angle dependent bias, we augment the electronic feedback force of the amplitude regulator with a non-unity gain output distribution matrix selected to correct for anisodamping. Using this method, we have decreased the angle dependent bias error by a factor of 30, resulting a minimum rate threshold of 2.5 dps. To further improve RIG performance, an electronically-induced self-precession rate is incorporated and successfully demonstrated to lower the rate threshold.

Book Annual Report

Download or read book Annual Report written by University of Minnesota. Intelligent Transportation Systems Institute and published by . This book was released on 2004 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sensors and Their Applications XII

Download or read book Sensors and Their Applications XII written by S. J. Prosser and published by CRC Press. This book was released on 2003-09-01 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sensors and Their Applications XII discusses novel research in the areas of sensors and transducers and provides insight into new and topical applications of this technology. It covers the underlying physics, fabrication technologies, and commercial applications of sensors. Some of the topics discussed include optical sensing, sensing materials, no

Book Publications Combined   Over 100 Studies In Nanotechnology With Medical  Military And Industrial Applications 2008 2017

Download or read book Publications Combined Over 100 Studies In Nanotechnology With Medical Military And Industrial Applications 2008 2017 written by and published by Jeffrey Frank Jones. This book was released on with total page 7322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 7,300 total pages ... Just a sample of the contents: Title : Multifunctional Nanotechnology Research Descriptive Note : Technical Report,01 Jan 2015,31 Jan 2016 Title : Preparation of Solvent-Dispersible Graphene and its Application to Nanocomposites Descriptive Note : Technical Report Title : Improvements To Micro Contact Performance And Reliability Descriptive Note : Technical Report Title : Delivery of Nanotethered Therapies to Brain Metastases of Primary Breast Cancer Using a Cellular Trojan Horse Descriptive Note : Technical Report,15 Sep 2013,14 Sep 2016 Title : Nanotechnology-Based Detection of Novel microRNAs for Early Diagnosis of Prostate Cancer Descriptive Note : Technical Report,15 Jul 2016,14 Jul 2017 Title : A Federal Vision for Future Computing: A Nanotechnology-Inspired Grand Challenge Descriptive Note : Technical Report Title : Quantifying Nanoparticle Release from Nanotechnology: Scientific Operating Procedure Series: SOP C 3 Descriptive Note : Technical Report Title : Synthesis, Characterization And Modeling Of Functionally Graded Multifunctional Hybrid Composites For Extreme Environments Descriptive Note : Technical Report,15 Sep 2009,14 Mar 2015 Title : Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters using Density Functional Theory Descriptive Note : Technical Report Title : Nanotechnology for the Solid Waste Reduction of Military Food Packaging Descriptive Note : Technical Report,01 Apr 2008,01 Jan 2015 Title : Magneto-Electric Conversion of Optical Energy to Electricity Descriptive Note : Final performance rept. 1 Apr 2012-31 Mar 2015 Title : Surface Area Analysis Using the Brunauer-Emmett-Teller (BET) Method: Standard Operating Procedure Series: SOP-C Descriptive Note : Technical Report,30 Sep 2015,30 Sep 2016 Title : Stabilizing Protein Effects on the Pressure Sensitivity of Fluorescent Gold Nanoclusters Descriptive Note : Technical Report Title : Theory-Guided Innovation of Noncarbon Two-Dimensional Nanomaterials Descriptive Note : Technical Report,14 Feb 2012,14 Feb 2016 Title : Deterring Emergent Technologies Descriptive Note : Journal Article Title : The Human Domain and the Future of Army Warfare: Present as Prelude to 2050 Descriptive Note : Technical Report Title : Drone Swarms Descriptive Note : Technical Report,06 Jul 2016,25 May 2017 Title : OFFSETTING TOMORROW'S ADVERSARY IN A CONTESTED ENVIRONMENT: DEFENDING EXPEDITIONARY ADVANCE BASES IN 2025 AND BEYOND Descriptive Note : Technical Report Title : A Self Sustaining Solar-Bio-Nano Based Wastewater Treatment System for Forward Operating Bases Descriptive Note : Technical Report,01 Feb 2012,31 Aug 2017 Title : Radiation Hard and Self Healing Substrate Agnostic Nanocrystalline ZnO Thin Film Electronics Descriptive Note : Technical Report,26 Sep 2011,25 Sep 2015 Title : Modeling and Experiments with Carbon Nanotubes for Applications in High Performance Circuits Descriptive Note : Technical Report Title : Radiation Hard and Self Healing Substrate Agnostic Nanocrystalline ZnO Thin Film Electronics (Per5 E) Descriptive Note : Technical Report,01 Oct 2011,28 Jun 2017 Title : High Thermal Conductivity Carbon Nanomaterials for Improved Thermal Management in Armament Composites Descriptive Note : Technical Report Title : Emerging Science and Technology Trends: 2017-2047 Descriptive Note : Technical Report Title : Catalysts for Lightweight Solar Fuels Generation Descriptive Note : Technical Report,01 Feb 2013,31 Jan 2017 Title : Integrated Real-Time Control and Imaging System for Microbiorobotics and Nanobiostructures Descriptive Note : Technical Report,01 Aug 2013,31 Jul 2014

Book Development of Thin Film Encapsulation Process for Piezoresistive MEMS Gyroscope with Wide Gaps

Download or read book Development of Thin Film Encapsulation Process for Piezoresistive MEMS Gyroscope with Wide Gaps written by Vipin Ayanoor-Vitikkate and published by . This book was released on 2008 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book How Prides of Lion Researchers are Evolving to be Interdisciplinary

Download or read book How Prides of Lion Researchers are Evolving to be Interdisciplinary written by Robert A. Montgomery and published by Frontiers Media SA. This book was released on 2019-12-05 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Adaptive Sliding Mode Control with Application to a MEMS Vibratory Gyroscope

Download or read book Adaptive Sliding Mode Control with Application to a MEMS Vibratory Gyroscope written by Juntao Fei and published by . This book was released on 2007 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Gyroscopes are commonly used sensors for measuring angular velocity in many areas of applications such as navigation, homing, and control stabilization. Vibratory gyroscopes are the devices that transfer energy from one axis to the other through Coriolis forces. Fabrication imperfections result in some cross stiffness and cross damping effects that may hinder the measurement of angular velocity of MEMS gyroscope. Other noise sources such as thermal, mechanical noise also affect the performance. The angular velocity measurement and minimization of the cross coupling between two axes are challenging problems in the control of vibrating gyroscopes. This dissertation develops adaptive sliding mode control strategies for a MEMS z-axis gyroscope. The proposed adaptive sliding mode controllers for MEMS z-axis gyroscope make real-time estimates of the angular velocity as well as all unknown gyroscope parameters including coupling stiffness and damping parameters. Therefore, fabrication imperfection and time varying noise and disturbance can be compensated for. These estimates are updated using the tracking error between the reference model trajectory and mass' real trajectory. The reference model trajectory is designed to satisfy the persistence of excitation condition to enable parameter estimates to converge to their true values. The indirect adaptive sliding mode controller and direct adaptive sliding mode controller with proportional and integral sliding surface are proposed for MEMS gyroscope. In the presence of unmeasured velocity states, an adaptive sliding mode controller with a sliding mode observer that can reconstruct the unmeasured states is developed to estimate the angular velocity and the linear damping and stiffness coefficients of the gyroscope in real time despite parameter variations and external disturbance. Moreover, the adaptive sliding mode control for two axes angular sensor is extended to triaxial angular sensor and a novel concept for an adaptively controlled triaxial angular velocity sensor device that is able to detect rotation in the three orthogonal axes, using a single vibrating mass is proposed. The numerical simulations of MEMS gyroscope show the effectiveness of all the proposed adaptive sliding mode control schemes. It is shown that the proposed adaptive sliding mode control schemes offer several advantages such as consistent estimates of gyroscope parameters including angular velocity and large robustness to parameter variations and disturbance."--Abstract.