EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development of 4H SiC High Voltage Unipolar Power Switching Devices

Download or read book Development of 4H SiC High Voltage Unipolar Power Switching Devices written by Petre Alexandrov and published by . This book was released on 2009 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: 4H-SiC is a promising material for switching high power and high temperature device applications. The superior properties of SiC, such as wider band-gap and higher value of critical electric field allow significant reduction in device on-resistance compared to Si power devices of similar voltage ratings. In addition the excellent thermal conductivity of SiC alleviates the device cooling requirements and allows design of smaller and more efficient systems. Several advantages of the unipolar power switches over the bipolar switches make them desirable for fast switching applications. Voltage-controlled normally-off devices are particularly attractive for practical applications because of simpler gate-drive circuitry. The advantages of the vertical JFET device being free of the problems related to oxide reliability, as compared to the MOSFET, recognize it as an excellent candidate for high power, high temperature switching applications. Device designs for normally-off and normally-on unipolar switches with blocking voltages from 400V to 11kV are proposed, based on a pure vertical trenched and implanted structure. Two different junction termination structures (junction termination extension and guard rings) are designed and successfully implemented. A fabrication process is designed to achieve a simple and reliable self-aligned fabrication process. The fabrication challenges are discussed and ways to improve the process are identified. Three different devices were designed and fabricated. The world's first normally-off 4H-SiC TIVJFET with a blocking voltage of 11kV was demonstrated, showing low specific on-resistance of 124mOhm.cm2. Normally-off and normally-on 4H-SiC High Frequency TIVJFETs with blocking voltages up to 400V were demonstrated. 3.3A-397V normally-off capability was achieved for a single die, corresponding to a high power of 1310 W/die. This corresponds to a class B operation RF power of 164W for a single die. Cut-off frequency fT= 0.9 to 1.5 GHz was reached. In the 1200V class devices a normally-on 4H-SiC TIVJFET with guard ring termination and substantially simplified processing was also demonstrated. The highest blocking voltage achieved was 1562V with a specific on-resistance of 2.8mOhm.cm2 at VDS=0.5V and VGS=2.5V and a current gain of 1495. The lowest specific on resistance achieved was 2.2mOhm.cm2 at VDS=0.5V and VGS=2.5V with a current gain of 1454 and a blocking voltage of 1232V.

Book Wide Bandgap Semiconductor Power Devices

Download or read book Wide Bandgap Semiconductor Power Devices written by B. Jayant Baliga and published by Woodhead Publishing. This book was released on 2018-10-17 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device), Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed. - Comprehensively covers power electronic devices, including materials (both gallium nitride and silicon carbide), physics, design considerations, and the most promising applications - Addresses the key challenges towards the realization of wide bandgap power electronic devices, including materials defects, performance and reliability - Provides the benefits of wide bandgap semiconductors, including opportunities for cost reduction and social impact

Book Modern Silicon Carbide Power Devices

Download or read book Modern Silicon Carbide Power Devices written by B Jayant Baliga and published by World Scientific. This book was released on 2023-09-18 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Carbide power devices are being increasingly adopted for many applications such as electric vehicles and charging stations. There is a large demand for a resource to learn and understand the basic physics of operation of these devices to create engineers with in depth knowledge about them.This unique compendium provides a comprehensive design guide for Silicon Carbide power devices. It systematically describes the device structures and analytical models for computing their characteristics. The device structures included are the Schottky diode, JBS rectifier, power MOSFET, JBSFET, IGBT and BiDFET. Unique structures that address achieving excellent voltage blocking and on-resistance are emphasized.This useful textbook and reference innovations for achieving superior high frequency operation and highlights manufacturing technology for the devices. The book will benefit professionals, academics, researchers and graduate students in the fields of electrical and electronic engineering, circuits and systems, semiconductors, and energy studies.

Book Fundamentals of Silicon Carbide Technology

Download or read book Fundamentals of Silicon Carbide Technology written by Tsunenobu Kimoto and published by John Wiley & Sons. This book was released on 2014-11-24 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.

Book Compound Semiconductors 1994  Proceedings of the Twenty First INT Symposium on Compound Semiconductors held in San Diego  California  18 22 September 1994

Download or read book Compound Semiconductors 1994 Proceedings of the Twenty First INT Symposium on Compound Semiconductors held in San Diego California 18 22 September 1994 written by Herb Goronkin and published by CRC Press. This book was released on 1995-01-01 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compound Semiconductors 1994 provides a comprehensive overview of research and applications of gallium arsenide, indium phosphide, silicon carbide, and other compound semiconducting materials. Contributed by leading experts, the book discusses growth, characterization, processing techniques, device applications, high-power, high-temperature semiconductor devices, visible emitters and optoelectronic integrated circuits (OEICs), heterojunction transistors, nanoelectronics, and nanophotonics, and simulation and modeling. The book is an essential reference for researchers working on the fabrication of semiconductors, characterization of materials, and their applications for devices, such as lasers, photodiodes, sensors, and transistors, particularly in the high-speed telecommunications industries.

Book Gallium Nitride And Silicon Carbide Power Devices

Download or read book Gallium Nitride And Silicon Carbide Power Devices written by B Jayant Baliga and published by World Scientific Publishing Company. This book was released on 2016-12-12 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last 30 years, significant progress has been made to improve our understanding of gallium nitride and silicon carbide device structures, resulting in experimental demonstration of their enhanced performances for power electronic systems. Gallium nitride power devices made by the growth of the material on silicon substrates have gained a lot of interest. Power device products made from these materials have become available during the last five years from many companies.This comprehensive book discusses the physics of operation and design of gallium nitride and silicon carbide power devices. It can be used as a reference by practicing engineers in the power electronics industry and as a textbook for a power device or power electronics course in universities.

Book Silicon Carbide Power Devices

Download or read book Silicon Carbide Power Devices written by B. Jayant Baliga and published by World Scientific. This book was released on 2006-01-05 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution. This book provides the first cohesive treatment of the physics and design of silicon carbide power devices with an emphasis on unipolar structures. It uses the results of extensive numerical simulations to elucidate the operating principles of these important devices. Sample Chapter(s). Chapter 1: Introduction (72 KB). Contents: Material Properties and Technology; Breakdown Voltage; PiN Rectifiers; Schottky Rectifiers; Shielded Schottky Rectifiers; Metal-Semiconductor Field Effect Transistors; The Baliga-Pair Configuration; Planar Power MOSFETs; Shielded Planar MOSFETs; Trench-Gate Power MOSFETs; Shielded Trendch-Gate MOSFETs; Charge Coupled Structures; Integral Diodes; Lateral High Voltage FETs; Synopsis. Readership: For practising engineers working on power devices, and as a supplementary textbook for a graduate level course on power devices.

Book CVD growth of SiC for high power and high frequency applications

Download or read book CVD growth of SiC for high power and high frequency applications written by Robin Karhu and published by Linköping University Electronic Press. This book was released on 2019-02-14 with total page 55 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Carbide (SiC) is a wide bandgap semiconductor that has attracted a lot of interest for electronic applications due to its high thermal conductivity, high saturation electron drift velocity and high critical electric field strength. In recent years commercial SiC devices have started to make their way into high and medium voltage applications. Despite the advancements in SiC growth over the years, several issues remain. One of these issues is that the bulk grown SiC wafers are not suitable for electronic applications due to the high background doping and high density of basal plane dislocations (BPD). Due to these problems SiC for electronic devices must be grown by homoepitaxy. The epitaxial growth is performed in chemical vapor deposition (CVD) reactors. In this work, growth has been performed in a horizontal hot-wall CVD (HWCVD) reactor. In these reactors it is possible to produce high-quality SiC epitaxial layers within a wide range of doping, both n- and p-type. SiC is a well-known example of polytypism, where the different polytypes exist as different stacking sequences of the Si-C bilayers. Polytypism makes polytype stability a problem during growth of SiC. To maintain polytype stability during homoepitaxy of the hexagonal polytypes the substrates are usually cut so that the angle between the surface normal and the c-axis is a few degrees, typically 4 or 8°. The off-cut creates a high density of micro-steps at the surface. These steps allow for the replication of the substrates polytype into the growing epitaxial layer, the growth will take place in a step-flow manner. However, there are some drawbacks with step-flow growth. One is that BPDs can replicate from the substrate into the epitaxial layer. Another problem is that 4H-SiC is often used as a substrate for growth of GaN epitaxial layers. The epitaxial growth of GaN has been developed on on-axis substrates (surface normal coincides with c-axis), so epitaxial 4H-SiC layers grown on off-axis substrates cannot be used as substrates for GaN epitaxial growth. In efforts to solve the problems with off-axis homoepitaxy of 4H-SiC, on-axis homoepitaxy has been developed. In this work, further development of wafer-scale on-axis homoepitaxy has been made. This development has been made on a Si-face of 4H-SiC substrates. The advances include highly resistive epilayers grown on on-axis substrates. In this thesis the ability to control the surface morphology of epitaxial layers grown on on-axis homoepitaxy is demonstrated. This work also includes growth of isotopically enriched 4H-SiC on on-axis substrates, this has been done to increase the thermal conductivity of the grown epitaxial layers. In (paper 1) on-axis homoepitaxy of 4H-SiC has been developed on 100 mm diameter substrates. This paper also contains comparisons between different precursors. In (paper 2) we have further developed on-axis homoepitaxy on 100 mm diameter wafers, by doping the epitaxial layers with vanadium. The vanadium doping of the epitaxial layers makes the layers highly resistive and thus suitable to use as a substrate for III-nitride growth. In (paper 3) we developed a method to control the surface morphology and reduce the as-grown surface roughness in samples grown on on-axis substrates. In (paper 4) we have increased the thermal conductivity of 4H-SiC epitaxial layers by growing the layers using isotopically enriched precursors. In (paper 5) we have investigated the role chlorine have in homoepitaxial growth of 4H-SiC. In (paper 6) we have investigated the charge carrier lifetime in as-grown samples and traced variations in lifetime to structural defects in the substrate. In (paper 7) we have investigated the formation mechanism of a morphological defect in homoepitaxial grown 4H-SiC.

Book Fundamentals of Silicon Carbide Technology

Download or read book Fundamentals of Silicon Carbide Technology written by Tsunenobu Kimoto and published by John Wiley & Sons. This book was released on 2014-09-23 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.

Book Handbook of Silicon Carbide Materials and Devices

Download or read book Handbook of Silicon Carbide Materials and Devices written by Zhe Chuan Feng and published by CRC Press. This book was released on 2023-07-10 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook presents the key properties of silicon carbide (SiC), the power semiconductor for the 21st century. It describes related technologies, reports the rapid developments and achievements in recent years, and discusses the remaining challenging issues in the field. The book consists of 15 chapters, beginning with a chapter by Professor W. J. Choyke, the leading authority in the field, and is divided into four sections. The topics include presolar SiC history, vapor-liquid-solid growth, spectroscopic investigations of 3C-SiC/Si, developments and challenges in the 21st century; CVD principles and techniques, homoepitaxy of 4H-SiC, cubic SiC grown on 4H-SiC, SiC thermal oxidation processes and MOS interface, Raman scattering, NIR luminescent studies, Mueller matrix ellipsometry, Raman microscopy and imaging, 4H-SiC UV photodiodes, radiation detectors, and short wavelength and synchrotron X-ray diffraction. This comprehensive work provides a strong contribution to the engineering, materials, and basic science knowledge of the 21st century, and will be of interest to material growers, designers, engineers, scientists, postgraduate students, and entrepreneurs.

Book Development of Optimal 4H SiC Bipolar Power Diodes for High Voltage High Frequency Applications

Download or read book Development of Optimal 4H SiC Bipolar Power Diodes for High Voltage High Frequency Applications written by Edward Robert Van Brunt and published by . This book was released on 2013 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Carbide

Download or read book Silicon Carbide written by Wolfgang J. Choyke and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 911 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the 1997 publication of "Silicon Carbide - A Review of Fundamental Questions and Applications to Current Device Technology" edited by Choyke, et al., there has been impressive progress in both the fundamental and developmental aspects of the SiC field. So there is a growing need to update the scientific community on the important events in research and development since then. The editors have again gathered an outstanding team of the world's leading SiC researchers and design engineers to write on the most recent developments in SiC.

Book Advancing Silicon Carbide Electronics Technology II

Download or read book Advancing Silicon Carbide Electronics Technology II written by Konstantinos Zekentes and published by Materials Research Forum LLC. This book was released on 2020-03-15 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents an in-depth review and analysis of Silicon Carbide device processing. The main topics are: (1) Silicon Carbide Discovery, Properties and Technology, (2) Processing and Application of Dielectrics in Silicon Carbide Devices, (3) Doping by Ion Implantation, (4) Plasma Etching and (5) Fabrication of Silicon Carbide Nanostructures and Related Devices. The book is also suited as supplementary textbook for graduate courses. Keywords: Silicon Carbide, SiC, Technology, Processing, Semiconductor Devices, Material Properties, Polytypism, Thermal Oxidation, Post Oxidation Annealing, Surface Passivation, Dielectric Deposition, Field Effect Mobility, Ion Implantation, Post Implantation Annealing, Channeling, Surface Roughness, Dry Etching, Plasma Etching, Ion Etching, Sputtering, Chemical Etching, Plasma Chemistry, Micromasking, Microtrenching, Nanocrystal, Nanowire, Nanotube, Nanopillar, Nanoelectromechanical Systems (NEMS).

Book Springer Handbook of Semiconductor Devices

Download or read book Springer Handbook of Semiconductor Devices written by Massimo Rudan and published by Springer Nature. This book was released on 2022-11-10 with total page 1680 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Springer Handbook comprehensively covers the topic of semiconductor devices, embracing all aspects from theoretical background to fabrication, modeling, and applications. Nearly 100 leading scientists from industry and academia were selected to write the handbook's chapters, which were conceived for professionals and practitioners, material scientists, physicists and electrical engineers working at universities, industrial R&D, and manufacturers. Starting from the description of the relevant technological aspects and fabrication steps, the handbook proceeds with a section fully devoted to the main conventional semiconductor devices like, e.g., bipolar transistors and MOS capacitors and transistors, used in the production of the standard integrated circuits, and the corresponding physical models. In the subsequent chapters, the scaling issues of the semiconductor-device technology are addressed, followed by the description of novel concept-based semiconductor devices. The last section illustrates the numerical simulation methods ranging from the fabrication processes to the device performances. Each chapter is self-contained, and refers to related topics treated in other chapters when necessary, so that the reader interested in a specific subject can easily identify a personal reading path through the vast contents of the handbook.

Book SiC Materials and Devices

Download or read book SiC Materials and Devices written by Michael Shur and published by World Scientific. This book was released on 2006 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: After many years of research and development, silicon carbide has emerged as one of the most important wide band gap semiconductors. The first commercial SiC devices ? power switching Schottky diodes and high temperature MESFETs ? are now on the market. This two-volume book gives a comprehensive, up-to-date review of silicon carbide materials properties and devices. With contributions by recognized leaders in SiC technology and materials and device research, SiC Materials and Devices is essential reading for technologists, scientists and engineers who are working on silicon carbide or other wide band gap materials and devices. The volumes can also be used as supplementary textbooks for graduate courses on silicon carbide and wide band gap semiconductor technology.

Book Sic Materials And Devices   Volume 1

Download or read book Sic Materials And Devices Volume 1 written by Sergey Rumyantsev and published by World Scientific. This book was released on 2006-07-25 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: After many years of research and development, silicon carbide has emerged as one of the most important wide band gap semiconductors. The first commercial SiC devices — power switching Schottky diodes and high temperature MESFETs — are now on the market. This two-volume book gives a comprehensive, up-to-date review of silicon carbide materials properties and devices. With contributions by recognized leaders in SiC technology and materials and device research, SiC Materials and Devices is essential reading for technologists, scientists and engineers who are working on silicon carbide or other wide band gap materials and devices. The volumes can also be used as supplementary textbooks for graduate courses on silicon carbide and wide band gap semiconductor technology.