Download or read book Space Telescopes and Instruments written by and published by . This book was released on 1998 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book American Doctoral Dissertations written by and published by . This book was released on 1995 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Optical Engineering written by and published by . This book was released on 2002 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publishes papers reporting on research and development in optical science and engineering and the practical applications of known optical science, engineering, and technology.
Download or read book Index to IEEE Publications written by Institute of Electrical and Electronics Engineers and published by . This book was released on 1996 with total page 1212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues for 1973- cover the entire IEEE technical literature.
Download or read book Solar Physics and Space Weather Instrumentation written by Silvano Fineschi and published by SPIE-International Society for Optical Engineering. This book was released on 2005 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of SPIE offer access to the latest innovations in research and technology and are among the most cited references in patent literature.
Download or read book Physics Briefs written by and published by . This book was released on 1993 with total page 968 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fundamentals of Silicon Carbide Technology written by Tsunenobu Kimoto and published by John Wiley & Sons. This book was released on 2014-11-24 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.
Download or read book Physics and Technology of Silicon Carbide Devices written by George Gibbs and published by . This book was released on 2016-10-01 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon (Si) is by far the most widely used semiconductor material for power devices. On the other hand, Si-based power devices are approaching their material limits, which has provoked a lot of efforts to find alternatives to Si-based power devices for better performance. With the rapid innovations and developments in the semiconductor industry, Silicon Carbide (SiC) power devices have progressed from immature prototypes in laboratories to a viable alternative to Si-based power devices in high-efficiency and high-power density applications. SiC devices have numerous persuasive advantages--high-breakdown voltage, high-operating electric field, high-operating temperature, high-switching frequency and low losses. Silicon Carbide (SiC) devices belong to the so-called wide band gap semiconductor group, which offers a number of attractive characteristics for high voltage power semiconductors when compared to commonly used silicon (Si). Recently, some SiC power devices, for example, Schottky-barrier diodes (SBDs), metal-oxide-semiconductor field-effecttransistors (MOSFETs), junction FETs (JFETs), and their integrated modules have come onto the market. Physics and Technology of Silicon Carbide Devices abundantly describes recent technologies on manufacturing, processing, characterization, modeling, etc. for SiC devices.
Download or read book Silicon Carbide Power Devices written by B. Jayant Baliga and published by World Scientific. This book was released on 2006-01-05 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution. This book provides the first cohesive treatment of the physics and design of silicon carbide power devices with an emphasis on unipolar structures. It uses the results of extensive numerical simulations to elucidate the operating principles of these important devices. Sample Chapter(s). Chapter 1: Introduction (72 KB). Contents: Material Properties and Technology; Breakdown Voltage; PiN Rectifiers; Schottky Rectifiers; Shielded Schottky Rectifiers; Metal-Semiconductor Field Effect Transistors; The Baliga-Pair Configuration; Planar Power MOSFETs; Shielded Planar MOSFETs; Trench-Gate Power MOSFETs; Shielded Trendch-Gate MOSFETs; Charge Coupled Structures; Integral Diodes; Lateral High Voltage FETs; Synopsis. Readership: For practising engineers working on power devices, and as a supplementary textbook for a graduate level course on power devices.
Download or read book Electrical Electronics Abstracts written by and published by . This book was released on 1997 with total page 1948 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book International Aerospace Abstracts written by and published by . This book was released on 1997 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2668 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Power GaN Devices written by Matteo Meneghini and published by Springer. This book was released on 2016-09-08 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.
Download or read book Wide Bandgap Semiconductor Power Devices written by B. Jayant Baliga and published by Woodhead Publishing. This book was released on 2018-10-17 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device), Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed. - Comprehensively covers power electronic devices, including materials (both gallium nitride and silicon carbide), physics, design considerations, and the most promising applications - Addresses the key challenges towards the realization of wide bandgap power electronic devices, including materials defects, performance and reliability - Provides the benefits of wide bandgap semiconductors, including opportunities for cost reduction and social impact
Download or read book Properties and Applications of Silicon Carbide written by Rosario Gerhardt and published by BoD – Books on Demand. This book was released on 2011-04-04 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we explore an eclectic mix of articles that highlight some new potential applications of SiC and different ways to achieve specific properties. Some articles describe well-established processing methods, while others highlight phase equilibria or machining methods. A resurgence of interest in the structural arena is evident, while new ways to utilize the interesting electromagnetic properties of SiC continue to increase.
Download or read book Power Electronics Device Applications of Diamond Semiconductors written by Satoshi Koizumi and published by Woodhead Publishing. This book was released on 2018-06-29 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power Electronics Device Applications of Diamond Semiconductors presents state-of-the-art research on diamond growth, doping, device processing, theoretical modeling and device performance. The book begins with a comprehensive and close examination of diamond crystal growth from the vapor phase for epitaxial diamond and wafer preparation. It looks at single crystal vapor deposition (CVD) growth sectors and defect control, ultra high purity SC-CVD, SC diamond wafer CVD, heteroepitaxy on Ir/MqO and needle-induced large area growth, also discussing the latest doping and semiconductor characterization methods, fundamental material properties and device physics. The book concludes with a discussion of circuits and applications, featuring the switching behavior of diamond devices and applications, high frequency and high temperature operation, and potential applications of diamond semiconductors for high voltage devices. - Includes contributions from today's most respected researchers who present the latest results for diamond growth, doping, device fabrication, theoretical modeling and device performance - Examines why diamond semiconductors could lead to superior power electronics - Discusses the main challenges to device realization and the best opportunities for the next generation of power electronics
Download or read book High Temperature Electronics written by F. Patrick McCluskey and published by CRC Press. This book was released on 1996-12-13 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of electronics that can operate at high temperatures has been identified as a critical technology for the next century. Increasingly, engineers will be called upon to design avionics, automotive, and geophysical electronic systems requiring components and packaging reliable to 200 °C and beyond. Until now, however, they have had no single resource on high temperature electronics to assist them. Such a resource is critically needed, since the design and manufacture of electronic components have now made it possible to design electronic systems that will operate reliably above the traditional temperature limit of 125 °C. However, successful system development efforts hinge on a firm understanding of the fundamentals of semiconductor physics and device processing, materials selection, package design, and thermal management, together with a knowledge of the intended application environments. High Temperature Electronics brings together this essential information and presents it for the first time in a unified way. Packaging and device engineers and technologists will find this book required reading for its coverage of the techniques and tradeoffs involved in materials selection, design, and thermal management and for its presentation of best design practices using actual fielded systems as examples. In addition, professors and students will find this book suitable for graduate-level courses because of its detailed level of explanation and its coverage of fundamental scientific concepts. Experts from the field of high temperature electronics have contributed to nine chapters covering topics ranging from semiconductor device selection to testing and final assembly.