EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development and Evaluation of Positioning Systems for Autonomous Vehicle Navigation

Download or read book Development and Evaluation of Positioning Systems for Autonomous Vehicle Navigation written by Rommel E. Mandapat and published by . This book was released on 2001 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Position Location

Download or read book Handbook of Position Location written by Reza Zekavat and published by John Wiley & Sons. This book was released on 2019-01-28 with total page 1573 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of position location technology — from fundamental theory to advanced practical applications Positioning systems and location technologies have become significant components of modern life, used in a multitude of areas such as law enforcement and security, road safety and navigation, personnel and object tracking, and many more. Position location systems have greatly reduced societal vulnerabilities and enhanced the quality of life for billions of people around the globe — yet limited resources are available to researchers and students in this important field. The Handbook of Position Location: Theory, Practice, and Advances fills this gap, providing a comprehensive overview of both fundamental and cutting-edge techniques and introducing practical methods of advanced localization and positioning. Now in its second edition, this handbook offers broad and in-depth coverage of essential topics including Time of Arrival (TOA) and Direction of Arrival (DOA) based positioning, Received Signal Strength (RSS) based positioning, network localization, and others. Topics such as GPS, autonomous vehicle applications, and visible light localization are examined, while major revisions to chapters such as body area network positioning and digital signal processing for GNSS receivers reflect current and emerging advances in the field. This new edition: Presents new and revised chapters on topics including localization error evaluation, Kalman filtering, positioning in inhomogeneous media, and Global Positioning (GPS) in harsh environments Offers MATLAB examples to demonstrate fundamental algorithms for positioning and provides online access to all MATLAB code Allows practicing engineers and graduate students to keep pace with contemporary research and new technologies Contains numerous application-based examples including the application of localization to drone navigation, capsule endoscopy localization, and satellite navigation and localization Reviews unique applications of position location systems, including GNSS and RFID-based localization systems The Handbook of Position Location: Theory, Practice, and Advances is valuable resource for practicing engineers and researchers seeking to keep pace with current developments in the field, graduate students in need of clear and accurate course material, and university instructors teaching the fundamentals of wireless localization.

Book Design and Evaluation of a Differential Global Positioning System  DGPS  for the NPS Autonomous Underwater Vehicle  AUV

Download or read book Design and Evaluation of a Differential Global Positioning System DGPS for the NPS Autonomous Underwater Vehicle AUV written by Gwladys Piton and published by . This book was released on 1999-08-01 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate underwater positioning remains an important challenge to AUV researchers. Recent development of Differential Global Positioning System (DGPS) embedded in an AUV proved the capability of DGPS fixes to reduce the position error. By surfacing regularly, the AUV takes DGPS fixes and integrates them for position estimation. The purpose of this study is to develop a low-cost DGPS for the NPS AUV. To match mission requirements, the system is designed such that the differential receiver and the GPS receiver are two independent stations using radio modems to communicate. Local experimental testing showed that this system can yield positions within one to five meters accuracy.

Book Design and Evaluation of an Integrated GPS INS System for Shallow water AUV Navigation

Download or read book Design and Evaluation of an Integrated GPS INS System for Shallow water AUV Navigation written by Eric R. Bachmann and published by . This book was released on 1995 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The major problem addressed by this research is the large and/or expensive equipment required by a conventional navigation system to accurately determine the position of an Autonomous Underwater Vehicle (AUV) during all phases of an underwater search or mapping mission. The approach taken was to prototype an integrated navigation system which combines Global Positioning System (OPS) and Inertial Measurement Unit (IMU), waterspeed and heading information using Kalman filtering techniques. Actual implementation was preceded by a computer simulation to test where the unit would fit into a larger hardware and software hierarchy of an AUV. The system was then evaluated in experiments which began with land based cart tests and progressed to open water trials where the unit was placed in a towed body behind a boat and alternately submerged and surfaced to provide periodic OPS updates to the Inertial Navigation System (INS). Test results and qualitative error estimates indicate that submerged navigation accuracy comparable to that of differential OPS may be attainable for periods of 30 seconds or more with low cost components of a small physical size.

Book Design and Evaluation of an Integrated  Self Contained GPS INS Shallow  Water AUV Navigation System  SANS

Download or read book Design and Evaluation of an Integrated Self Contained GPS INS Shallow Water AUV Navigation System SANS written by Randy G. Walker and published by . This book was released on 1996-06-01 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main problem addressed by this research is to find an alternative to the use of large and/or expensive equipment required by conventional navigation systems to accurately determine the position of an Autonomous Underwater Vehicle (AUV) during all phases of an underwater search or mapping mission. The approach taken was to advance an existing integrated navigation system prototype which combines Global Positioning System (GPS), Inertial Measurement Unit (IMU), water speed, and heading information using Kalman filtering techniques. The hardware and software architecture of the prototype system were advanced to a level such that it is completely self- contained in a relatively small, lightweight package capable of on-board processing of sensor data and outpouring updated position fixes at a rate of 10 Hz; an improvement from the 5 Hz rate delivered by the prototype. The major changes to the preceding prototype implemented by this research were to install an on-board processor to locally process sensor outputs, and improve upon the analog filter and voltage regulation circuitry. Preliminary test results indicate the newly designed SANS provides a 100% performance improvement over the previous prototype. It now delivers a 10Hz update rate, and increased accuracy due to the improved analog filter and the higher sampling rate provided by the processor.

Book Toward Inertial Navigation on Chip

Download or read book Toward Inertial Navigation on Chip written by Haoran Wen and published by Springer Nature. This book was released on 2019-09-14 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis develops next-generation multi-degree-of-freedom gyroscopes and inertial measurement units (IMU) using micro-electromechanical-systems (MEMS) technology. It covers both a comprehensive study of the physics of resonator gyroscopes and novel micro/nano-fabrication solutions to key performance limits in MEMS resonator gyroscopes. Firstly, theoretical and experimental studies of physical phenomena including mode localization, nonlinear behavior, and energy dissipation provide new insights into challenges like quadrature errors and flicker noise in resonator gyroscope systems. Secondly, advanced designs and micro/nano-fabrication methods developed in this work demonstrate valuable applications to a wide range of MEMS/NEMS devices. In particular, the HARPSS+ process platform established in this thesis features a novel slanted nano-gap transducer, which enabled the first wafer-level-packaged single-chip IMU prototype with co-fabricated high-frequency resonant triaxial gyroscopes and high-bandwidth triaxial micro-gravity accelerometers. This prototype demonstrates performance amongst the highest to date, with unmatched robustness and potential for flexible substrate integration and ultra-low-power operation. This thesis shows a path toward future low-power IMU-based applications including wearable inertial sensors, health informatics, and personal inertial navigation.

Book The 8th International Conference on Advances in Construction Machinery and Vehicle Engineering

Download or read book The 8th International Conference on Advances in Construction Machinery and Vehicle Engineering written by Saman K. Halgamuge and published by Springer Nature. This book was released on with total page 1282 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Creating Autonomous Vehicle Systems

Download or read book Creating Autonomous Vehicle Systems written by Shaoshan Liu and published by Morgan & Claypool Publishers. This book was released on 2017-10-25 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.

Book Inertial and Visual Navigation Systems for Autonomous Vehicles

Download or read book Inertial and Visual Navigation Systems for Autonomous Vehicles written by Dipam Chakraborty and published by . This book was released on 2018-12-09 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master's Thesis from the year 2018 in the subject Engineering - Robotics, National Institute of Technology, Rourkela, language: English, abstract: Indoor navigation is a challenging task due to the absence of Global Positioning System(GPS). This project removes the need for GPS in systems by combining Inertial Navigation Systems (INS) and Visual Navigation Systems (VNS), with the help of machine learning with Artificial and Convolutional Neural Networks.In GPS denied environments a highly accurate INS is necessary, it must also be coupled with another system to bound the continious drift error that is present in INS, for which VNS is employed. The system was implemented using a ground robot to collect ground truth data, which were used as datasets to train a filter that increases the accuracy of the INS. The accuracy of the INS has been proven on the hardware platfrom over multiple datasets. Eventually Visual Navigation data can also be fed into the same system, which for now is implemented in simulation, as an independent system. A software and hardware framework have been developed that can be used in the future for further developments. The project also optimizes visual navigation for use on low power hardware with hardware acceleration for maximized speed. A low cost and scalable indoor navigation system is developed for indoor navigation, which can also be further extended to Autonomous Underwater Vehicles (AUV) in 3D space.

Book Development of an Experimental Global Positioning System  GPS  Receiver Platform for Navigation Algorithm Evaluation

Download or read book Development of an Experimental Global Positioning System GPS Receiver Platform for Navigation Algorithm Evaluation written by Jonathan M. Hill and published by . This book was released on 2001 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Intelligent Vehicle Systems

Download or read book Intelligent Vehicle Systems written by Raj Madhavan and published by Nova Publishers. This book was released on 2006 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents new research on autonomous mobility capabilities and shows how technological advances can be anticipated in the coming two decades. An in-depth description is presented on the theoretical foundations and engineering approaches that enable these capabilities. Chapter 1 provides a brief introduction to the 4D/RCS reference model architecture and design methodology that has proven successful in guiding the development of autonomous mobility systems. Chapters 2 to 7 provide more detailed descriptions of research that has been conducted and algorithms that have been developed to implement the various aspects of the 4D/RCS reference model architecture and design methodology. Chapters 8 and 9 discuss applications, performance measures, and standards. Chapter 10 provides a history of Army and DARPA research in autonomous ground mobility. Chapter 11 provides a perspective on the potential future developments in autonomous mobility.

Book Wireless Positioning  Principles and Practice

Download or read book Wireless Positioning Principles and Practice written by Ian Sharp and published by Springer. This book was released on 2018-05-25 with total page 629 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on non-GNSS positioning systems and approaches. Although it addresses both theoretical and practical aspects, the primary focus is on engineering practice. This is achieved by providing in-depth studies on a number of major topics such as tracking system architecture, link budget, system design, implementation, testing, and performance evaluation. It studies four positioning application cases in detail: covert vehicle tracking, horse racing, rowing, and tracking for field sports. Its comprehensive and systematic treatment of practical issues in wireless positioning makes the book particularly suitable for readers who are interested in learning about practical wireless positioning solutions. It will also benefit researchers, engineers and graduate students in fields such as positioning and navigation, geospatial engineering and telecommunications.

Book Technology Development for Army Unmanned Ground Vehicles

Download or read book Technology Development for Army Unmanned Ground Vehicles written by National Research Council and published by National Academies Press. This book was released on 2003-02-01 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned ground vehicles (UGV) are expected to play a key role in the Army's Objective Force structure. These UGVs would be used for weapons platforms, logistics carriers, and reconnaissance, surveillance, and target acquisition among other things. To examine aspects of the Army's UGV program, assess technology readiness, and identify key issues in implementing UGV systems, among other questions, the Deputy Assistant Secretary of the Army for Research and Technology asked the National Research Council (NRC) to conduct a study of UGV technologies. This report discusses UGV operational requirements, current development efforts, and technology integration and roadmaps to the future. Key recommendations are presented addressing technical content, time lines, and milestones for the UGV efforts.

Book Sensor Fusion in Localization  Mapping and Tracking

Download or read book Sensor Fusion in Localization Mapping and Tracking written by Constantin Wellhausen and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making autonomous driving possible requires extensive information about the surroundings as well as the state of the vehicle. While specific information can be obtained through singular sensors, a full estimation requires a multi sensory approach, including redundant sources of information to increase robustness. This thesis gives an overview of tasks that arise in sensor fusion in autonomous driving, and presents solutions at a high level of detail, including derivations and parameters where required to enable re-implementation. The thesis includes theoretical considerations of the approaches as well as practical evaluations. Evaluations are also included for approaches that did not prove to solve their tasks robustly. This follows the belief that both results further the state of the art by giving researchers ideas about suitable and unsuitable approaches, where otherwise the unsuitable approaches may be re-implemented multiple times with similar results. The thesis focuses on model-based methods, also referred to in the following as classical methods, with a special focus on probabilistic and evidential theories. Methods based on deep learning are explicitly not covered to maintain explainability and robustness which would otherwise strongly rely on the available training data. The main focus of the work lies in three main fields of autonomous driving: localization, which estimates the state of the ego-vehicle, mapping or obstacle detection, where drivable areas are identified, and object detection and tracking, which estimates the state of all surrounding traffic participants. All algorithms are designed with the requirements of autonomous driving in mind, with a focus on robustness, real-time capability and usability of the approaches in all potential scenarios that may arise in urban driving. In localization the state of the vehicle is determined. While traditionally global positioning systems such as a Global Navigation Satellite System (GNSS) are often used for this task, they are prone to errors and may produce jumps in the position estimate which may cause unexpected and dangerous behavior. The focus of research in this thesis is the development of a localization system which produces a smooth state estimate without any jumps. For this two localization approaches are developed and executed in parallel. One localization is performed without global information to avoid jumps. This however only provides odometry, which drifts over time and does not give global positioning. To provide this information the second localization includes GNSS information, thus providing a global estimate which is free of global drift. Additionally the use of LiDAR odometry for improving the localization accuracy is evaluated. For mapping the focus of this thesis is on providing a computationally efficient mapping system which is capable of being used in arbitrarily large areas with no predefined size. This is achieved by mapping only the direct environment of the vehicle, with older information in the map being discarded. This is motivated by the observation that the environment in autonomous driving is highly dynamic and must be mapped anew every time the vehicles sensors observe an area. The provided map gives subsequent algorithms information about areas where the vehicle can or cannot drive. For this an occupancy grid map is used, which discretizes the map into cells of a fixed size, with each cell estimating whether its corresponding space in the world is occupied. However the grid map is not created for the entire area which could potentially be visited, as this may be very large and potentially impossible to represent in the working memory. Instead the map is created only for a window around the vehicle, with the vehicle roughly in the center. A hierarchical map organization is used to allow efficient moving of the window as the vehicle moves through an area. For the hierarchical map different data structures are evaluated for their time and space complexity in order to find the most suitable implementation for the presented mapping approach. Finally for tracking a late-fusion approach to the multi-sensor fusion task of estimating states of all other traffic participants is presented. Object detections are obtained from LiDAR, camera and Radar sensors, with an additional source of information being obtained from vehicle-to-everything communication which is also fused in the late fusion. The late fusion is developed for easy extendability and with arbitrary object detection algorithms in mind. For the first evaluation it relies on black box object detections provided by the sensors. In the second part of the research in object tracking multiple algorithms for object detection on LiDAR data are evaluated for the use in the object tracking framework to ease the reliance on black box implementations. A focus is set on detecting objects from motion, where three different approaches are evaluated for motion estimation in LiDAR data: LiDAR optical flow, evidential dynamic mapping and normal distribution transforms. The thesis contains both theoretical contributions and practical implementation considerations for the presented approaches with a high degree of detail including all necessary derivations. All results are implemented and evaluated on an autonomous vehicle and real-world data. With the developed algorithms autonomous driving is realized for urban areas.