EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development and Characterization of Rice Genotypes for Water Use Efficiency and Drought Resistance

Download or read book Development and Characterization of Rice Genotypes for Water Use Efficiency and Drought Resistance written by Anuj Kumar and published by . This book was released on 2017 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rice, the second largest staple food crop, uses 30% of global fresh water to complete its life cycle worldwide. Water deficits worldwide have become a serious problem affecting rice growth and ultimately grain yield. To solve the water problem globally, improvement of water use efficiency (WUE) and other drought resistance (DR) traits in rice genotypes would be a useful strategy using advanced genomics tools. In this study, our objectives were to 1) analyze phenotypes of the USDA rice mini-core collection (URMC) for WUE and DR related traits, 2) correlate drought response phenes for physiological traits and grain yield in the URMC, 3) utilize molecular genetic dissection of WUE and DR using genome-wide association (GWA) analysis in the URMC, and 4) conduct genome-wide meta-analysis of QTLs for DR traits and grain yield components under drought stress. In the results, 35 rice genotypes showing ≤25% reduction, 14 rice genotypes exhibiting 25-40% reduction, and 8 rice genotypes showing ≥40% reduction, were drought resistant, moderate drought resistant, and drought-sensitive for WUE, photosynthesis, biomass, and other DR traits under drought stress, respectively. The results suggest from the correlation analysis that strong correlation exists between major grain yield components (number of spikelets per panicle, number of filled and unfilled grains per panicle) and major morpho-physiological traits (plant biomass, photosynthesis, and WUEi). In the GWA analysis, 24, 16, 26, 10, 19, 23, 7, 17, 11, 14, 17, 15, 29, 12, 18, and 19 significant SNPs were highly associated with WUEi, TR, stomatal conductance, Ci & Ci/Ca , plant biomass, NOTs, RWC, LR, chlorophyll content, and chlorophyll fluorescence (Fv', Fm', Fv'/Fm', PhiPSII, ETR, and qN) and their identified candidate genes for WUEi and DR traits. In the meta-analysis, 13 genome-wide MQTLs were found useful containing higher number of QTLs, lower genetic distance with lower CI. Therefore, this information would be useful for the breeding community and geneticists to dissect the genetic architecture of WUE and DR traits for developing high yielding drought resistant rice genotypes.

Book Phenotypic and Gene Expression Analysis of Diverse Rice Genotypes in Response to Drought

Download or read book Phenotypic and Gene Expression Analysis of Diverse Rice Genotypes in Response to Drought written by Miranti Rahmaningsih and published by . This book was released on 2016 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drought is one of the most limiting factors for rice (Oryza sativa L.) growth and development with vegetative and reproductive stages the most sensitive and distinct phases. During the vegetative stage, drought can cause reduction in growth and biomass accumulation. Moreover, water stress at reproductive stage can reduce yield significantly. Plants are protected against drought by three different mechanisms: drought avoidance, drought tolerance, and drought escape. An integrated approach combining physiology, breeding, and genomics could be an effective way to characterize and mitigate this problem. The objectives of this research were to (1) screen a diverse set of rice genotypes at both vegetative and reproductive stages for drought response; (2) characterize the genetic differences in mechanisms of drought response conferring drought stress resistance; and (3) study the expression patterns of genes that contribute to yield under water stress conditions. At the vegetative stage, drought was applied by withholding water at 50% of the field capacity for ten days, while in the reproductive stage drought was given at pre-anthesis for three to four days. Results from the first study showed that the diverse genotypes exhibit different drought resistance mechanisms. Padi Tarab Arab and N22 exhibit drought avoidance and tolerance mechanisms while GPNO 25912 exhibits a tolerance mechanism. Gene expression analysis using RNA from plants early after drought stress identified clear differences between resistant and sensitive genotypes. The resistant genotypes showed a high induction in the relative expression of drought stress genes under drought compared to control, while the three sensitive genotypes showed low, no, late, or inconsistent induction in expression. Results from the second study demonstrated that between the two types of samples for gene expression analysis in four different genotypes, the inflorescence gives a higher correlation with phenotypic measurements than the flag leaf during reproductive stage. Meanwhile, both invertase genes and transcription factors confer positive effects to drought resistance particularly in relation to number of grain per panicle and panicle length.

Book Drought Resistance in Crops with Emphasis on Rice

Download or read book Drought Resistance in Crops with Emphasis on Rice written by International Rice Research Institute and published by Int. Rice Res. Inst.. This book was released on 1982 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Plant Breeding For Stress Environments

Download or read book Plant Breeding For Stress Environments written by Abraham Blum and published by CRC Press. This book was released on 2018-01-18 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication opens with the inevitable introduction, moves on to the present traditional approach to breeding for yield stability, and then enumerates a detailed discussion of the physiological approach to breeding for resistance to specific stresses. Not all environmental stresses are covered, omitting those for which little can be said today on practical breeding solutions.

Book Plant Responses to Drought Stress

Download or read book Plant Responses to Drought Stress written by Ricardo Aroca and published by Springer Science & Business Media. This book was released on 2012-10-12 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the multiple strategies that plants have developed to cope with drought, one of the most severe environmental stresses. Experts in the field present 17 chapters, each of which focuses on a basic concept as well as the latest findings. The following major aspects are covered in the book: · Morphological and anatomical adaptations · Physiological responses · Biochemical and molecular responses · Ecophysiological responses · Responses to drought under field conditions The contributions will serve as an invaluable source of information for researchers and advanced students in the fields of plant sciences, agriculture, ecophysiology, biochemistry and molecular biology.

Book Identification and Characterization of Contrasting Genotypes Cultivars to Discover Novel Players in Crop Responses to Abiotic Biotic Stresses

Download or read book Identification and Characterization of Contrasting Genotypes Cultivars to Discover Novel Players in Crop Responses to Abiotic Biotic Stresses written by Raul Antonio Sperotto and published by Frontiers Media SA. This book was released on 2022-02-24 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Rice Research for Abiotic Stress Tolerance

Download or read book Advances in Rice Research for Abiotic Stress Tolerance written by Mirza Hasanuzzaman and published by Woodhead Publishing. This book was released on 2018-11-12 with total page 986 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world’s population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses Provides practical insights into a wide range of management and crop improvement practices Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology

Book Methodologies for Root Drought Studies in Rice

Download or read book Methodologies for Root Drought Studies in Rice written by H. E. Shashidhar and published by Int. Rice Res. Inst.. This book was released on 2012 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Rice Improvement

Download or read book Rice Improvement written by Jauhar Ali and published by Springer Nature. This book was released on 2021-05-05 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. By 2050, human population is expected to reach 9.7 billion. The demand for increased food production needs to be met from ever reducing resources of land, water and other environmental constraints. Rice remains the staple food source for a majority of the global populations, but especially in Asia where ninety percent of rice is grown and consumed. Climate change continues to impose abiotic and biotic stresses that curtail rice quality and yields. Researchers have been challenged to provide innovative solutions to maintain, or even increase, rice production. Amongst them, the ‘green super rice’ breeding strategy has been successful for leading the development and release of multiple abiotic and biotic stress tolerant rice varieties. Recent advances in plant molecular biology and biotechnologies have led to the identification of stress responsive genes and signaling pathways, which open up new paradigms to augment rice productivity. Accordingly, transcription factors, protein kinases and enzymes for generating protective metabolites and proteins all contribute to an intricate network of events that guard and maintain cellular integrity. In addition, various quantitative trait loci associated with elevated stress tolerance have been cloned, resulting in the detection of novel genes for biotic and abiotic stress resistance. Mechanistic understanding of the genetic basis of traits, such as N and P use, is allowing rice researchers to engineer nutrient-efficient rice varieties, which would result in higher yields with lower inputs. Likewise, the research in micronutrients biosynthesis opens doors to genetic engineering of metabolic pathways to enhance micronutrients production. With third generation sequencing techniques on the horizon, exciting progress can be expected to vastly improve molecular markers for gene-trait associations forecast with increasing accuracy. This book emphasizes on the areas of rice science that attempt to overcome the foremost limitations in rice production. Our intention is to highlight research advances in the fields of physiology, molecular breeding and genetics, with a special focus on increasing productivity, improving biotic and abiotic stress tolerance and nutritional quality of rice.

Book Genetic Diversity of Cultivated Tropical Plants

Download or read book Genetic Diversity of Cultivated Tropical Plants written by Perla Hamon and published by Editions Quae. This book was released on 2003 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Morpho physiological Analysis of Diverse Drought Resistant and Sensitive Rice Genotypes to Identify Distinguishing Anatomical Root Phenes

Download or read book A Morpho physiological Analysis of Diverse Drought Resistant and Sensitive Rice Genotypes to Identify Distinguishing Anatomical Root Phenes written by Clinton Philip Greub and published by . This book was released on 2015 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: A set of 37 genotypes selected from a survey of over 200 diverse germplasms, for their diverse drought tolerance mechanisms, were analyzed in this study for root physiological traits that are indicative of different drought resistance mechanisms. The genotypes include controls such as the drought sensitive IR64 and Nipponbare, along with the drought resistant Nagina 22 (N22) and Bengal landraces to identify distinguishing phenotypic features of resistant accessions. Anatomical traits studied include total areas of the cross-sections of the stele, cortex, aerenchyma, cortical-cell, and xylem tissue; the number of aerenchyma, xylem vessels, cortical cell file number and size that together describe a number of root phenes, or individual traits that can be analyzed genetically. To make paired comparisons in size using cross-section area the ratio of xylem to stele, stele to cortex, cortex to cross-section, stele to cross-section, cortical cell area to cortex, and aerenchyma to cortical cell area were calculated. Architectural traits were evaluated for root diameter, number of crown roots, lateral root densities, root length and root angles. To study the expression of genes with known function in root traits, the intrinsic gene expression levels of ten candidate genes under optimal growth conditions were estimated by qRT-PCR, which was then used in correlation studies with the data on phenotypic variation. These correlations between gene expression and root phenotype across diverse rice genotypes provide a novel insight to the role of these genes in determining root phenes and their potential function in drought resistance.

Book Identification and characterization of contrasting genotypes cultivars to discover novel players in crop responses to abiotic biotic stresses  volume II

Download or read book Identification and characterization of contrasting genotypes cultivars to discover novel players in crop responses to abiotic biotic stresses volume II written by Raul Antonio Sperotto and published by Frontiers Media SA. This book was released on 2023-01-30 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Water Use Efficiency  Advances and Challenges in a Changing Climate

Download or read book Water Use Efficiency Advances and Challenges in a Changing Climate written by Manoj Menon and published by Frontiers Media SA. This book was released on 2019-10-15 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Water wise Rice Production

    Book Details:
  • Author : B. A. M. Bouman
  • Publisher : Int. Rice Res. Inst.
  • Release : 2002
  • ISBN : 9712201821
  • Pages : 352 pages

Download or read book Water wise Rice Production written by B. A. M. Bouman and published by Int. Rice Res. Inst.. This book was released on 2002 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality

Download or read book Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality written by Mohammad Anwar Hossain and published by John Wiley & Sons. This book was released on 2021-03-22 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the latest knowledge of improving the stress tolerance, yield, and quality of rice crops One of the most important cereal crops, rice provides food to more than half of the world population. Various abiotic stresses—currently impacting an estimated 60% of crop yields—are projected to increase in severity and frequency due to climate change. In light of the threat of global food grain insecurity, interest in molecular rice breeding has intensified in recent years. Progress has been made, but there remains an urgent need to develop stress-tolerant, bio-fortified rice varieties that provide consistent and high-quality yields under both stress and non-stress conditions. Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality is the first book to provide comprehensive and up-to-date coverage of this critical topic, containing the physiological, biochemical, and molecular information required to develop effective engineering strategies for enhancing rice yield. Authoritative and in-depth chapters examine the molecular and genetic bases of abiotic stress tolerance, discuss yield and quality improvement of rice, and explore new approaches to better utilize natural resources through modern breeding. Topics Include rice adaptation to climate change, enriching rice yields under low phosphorus and light intensity, increasing iron, zinc, vitamin and antioxidant content, and improving tolerance to salinity, drought, heat, cold, submergence, heavy metals and Ultraviolet-B radiation. This important resource: Contains the latest scientific information on a wide range of topics central to molecular breeding for rice Provides timely coverage molecular breeding for improving abiotic stress tolerance, bioavailability of essential micronutrients, and crop productivity through biotechnological methods Features detailed chapters written by internationally-recognized experts in the field Discusses recent progress and future directions in molecular breeding strategies and research Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality is required reading for rice researchers, agriculturists, and agribusiness professionals, and the ideal text for instructors and students in molecular plant breeding, abiotic stress tolerance, environmental science, and plant physiology, biochemistry, molecular biology, and biotechnology.

Book Molecular Genetic Analysis of Drought Resistance and Productivity Traits of Rice Genotypes

Download or read book Molecular Genetic Analysis of Drought Resistance and Productivity Traits of Rice Genotypes written by Yheni Dwiningsih and published by . This book was released on 2020 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rice (Oryza sativa L.) is the staple food for a majority of the world's population, and uses 30% of the global fresh water during its life cycle. Drought at the reproductive stage is the most important abiotic stress factor limiting grain yield. The United States is the third largest exporter of rice, and Arkansas is the top rice-producing state. The Arkansas rice-growing region in the Lower Mississippi belt is among the 10 areas with the highest risk of water scarcity. Adapted U.S. rice cultivars were screened for drought resistant (DR) traits to find sources for breeding U.S. rice cultivars for a water saving agricultural system. A recombinant inbred line (RIL) population, derived from varieties Kaybonnet (DR) and ZHE733 (drought sensitive), termed K/Z RILs was chosen for genetic analysis of DR traits. The objectives of this research were to 1) analyze the phenotypic and grain yield components of the K/Z RIL rice population for drought-resistance-related traits, 2) evaluate the Abscisic Acid (ABA) response of the K/Z RIL rice population on root architectural traits in relation to drought stress resistance, 3) screen polymorphic molecular markers to identify genes linked to productivity traits of grain yield under drought stress, measured by number of filled grain per panicle using bulk segregant analysis (BSA), and 4) identify QTLs and candidate genes in the K/Z RIL population for drought resistance associated with vegetative morphological traits, grain yield components under drought stress and well-watered conditions, and root architectural traits related to ABA response. The RIL population was screened in the field at Fayetteville (AR) by controlled drought stress (DS) treatment at the reproductive stage, and the effect of DS quantified by measuring drought-related traits. ABA sensitivity was quantified by measuring root architectural traits at the V3 stage. Based on the filled grain per panicle number, 13.13% of K/Z RIL population and parent Kaybonnet were highly drought resistant, while 75.75% of RILs and parent ZHE733 were drought sensitive. Under ABA conditions, Kaybonnet and 48 drought resistant lines exhibit ABA sensitivity, implying regulation of osmotic stress tolerance via ABA-mediated cell signaling. Based on BSA screening, 13 polymorphic markers potentially linked to DR traits were identified. QTL analysis was performed with 4133 SNPs markers by using QTL IciMapping. A total of 213 QTLs and 628 candidate genes within the QTL regions were identified for drought-related traits. The RT-qPCR analysis of the candidate genes revealed that a high number of drought resistance genes were up-regulated in Kaybonnet as the drought-resistant parent. Information from this research will serve an important step towards improvement of adapted Arkansas rice cultivars for higher grain production under DS conditions.

Book Plant Breeding for Abiotic Stress Tolerance

Download or read book Plant Breeding for Abiotic Stress Tolerance written by Roberto Fritsche-Neto and published by Springer Science & Business Media. This book was released on 2012-06-05 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid population growth and the increase in the per capita income, especially in the group of emerging countries referred to as BRIC countries (Brazil, Russia, India, China and South Africa) has created huge pressure for the expansion of the agricultural growing area and the crop yields to meet the rising demand. As a result, many areas that have been considered marginal for growing crops, due to their low fertility, drought, salinity, and many other abiotic stresses, have now been incorporated in the production system. Additionally, climate change has brought new challenges to agriculture to produce food, feed, fiber and biofuels. To cope with these new challenges, many plant breeding programs have reoriented their breeding scope to stress tolerance in the last years. The authors of this book have collected the most recent advances and discoveries applied to breeding for abiotic stresses in this book, starting with new physiological concepts and breeding methods, and moving on to discuss modern molecular biological approaches geared to the development of improved cultivars tolerant to most sorts of abiotic stress. Written in an easy to understand style, this book is an excellent reference work for students, scientists and farmers interested in learning how to breed for abiotic stresses scenarios, presenting the state-of-the-art in plant stresses and allowing the reader to develop a greater understanding of the basic mechanisms of tolerance to abiotic stresses and how to breed for them.