EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Developing Bayesian Methods for Biomedical Image Processing

Download or read book Developing Bayesian Methods for Biomedical Image Processing written by Huaizhong Zhang and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The broad objective of this thesis is the development of application-specific, computation ally efficient image processing approaches in the light of Bayesian theory when applied to Biomedical Imagery. Due to its rigorous theoretical background and precise formula expression, the Bayesian method has been successfully applied in image processing over the years. Based on the investigation of relationships between various optimization criteria within the Bayesian framework, the main contributions of this thesis lie in the development of four different, but interrelated, image processing approaches with strong connections to curve evolution and estimation techniques. The first contribution of this thesis is the development of a novel adaptive bias correction approach by applying the Markov Chain Monte Carlo technique in image alignment. A hierarchical model is proposed for estimating the accumulated bias and the unknown mean is simulated by a Gibbs sampler. Then, the scale parameters are estimated such that the equalization transformation can be performed semi-automatically. Another contribution of this thesis is the development of an application-specific improvement to the classical Geodesic Active Contours method where a prior model is used to incorporate prior information into the scheme. The third contribution of this thesis is the development of a coupling method in boundary finding of Regions of Interest, which combines advantages of both edge-based and region-based techniques. The key behind this approach is the use of a mixture modelling technique that produces the image energy by applying the Bayesian method in order to control curve evolution. The final contribution of this thesis is the development of a termination criterion that offers a reliable method to control curve evolution and help curve convergence. Here we apply the Bayesian method to generate a stability index which is used to control curve evolution leading to more stable and efficient curve evolution.

Book Bayesian and grAphical Models for Biomedical Imaging

Download or read book Bayesian and grAphical Models for Biomedical Imaging written by M. Jorge Cardoso and published by Springer. This book was released on 2014-09-22 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First International Workshop on Bayesian and grAphical Models for Biomedical Imaging, BAMBI 2014, held in Cambridge, MA, USA, in September 2014 as a satellite event of the 17th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2014. The 11 revised full papers presented were carefully reviewed and selected from numerous submissions with a key aspect on probabilistic modeling applied to medical image analysis. The objectives of this workshop compared to other workshops, e.g. machine learning in medical imaging, have a stronger mathematical focus on the foundations of probabilistic modeling and inference. The papers highlight the potential of using Bayesian or random field graphical models for advancing scientific research in biomedical image analysis or for the advancement of modeling and analysis of medical imaging data.

Book Uncertainty for Safe Utilization of Machine Learning in Medical Imaging  and Graphs in Biomedical Image Analysis

Download or read book Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Graphs in Biomedical Image Analysis written by Carole H. Sudre and published by Springer Nature. This book was released on 2020-10-05 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2020, and the Third International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshops were held virtually due to the COVID-19 pandemic. For UNSURE 2020, 10 papers from 18 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world. GRAIL 2020 accepted 10 papers from the 12 submissions received. The workshop aims to bring together scientists that use and develop graph-based models for the analysis of biomedical images and to encourage the exploration of graph-based models for difficult clinical problems within a variety of biomedical imaging contexts.

Book Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging

Download or read book Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging written by Henning Müller and published by Springer. This book was released on 2017-06-30 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-workshop proceedings of the International Workshop on Medical Computer Vision, MCV 2016, and of the International Workshop on Bayesian and grAphical Models for Biomedical Imaging, BAMBI 2016, held in Athens, Greece, in October 2016, held in conjunction with the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016. The 13 papers presented in MCV workshop and the 6 papers presented in BAMBI workshop were carefully reviewed and selected from numerous submissions. The goal of the MCV workshop is to explore the use of "big data” algorithms for harvesting, organizing and learning from large-scale medical imaging data sets and for general-purpose automatic understanding of medical images. The BAMBI workshop aims to highlight the potential of using Bayesian or random field graphical models for advancing research in biomedical image analysis.

Book Advanced Bayesian Methods for Medical Test Accuracy

Download or read book Advanced Bayesian Methods for Medical Test Accuracy written by Lyle D. Broemeling and published by CRC Press. This book was released on 2016-04-19 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Useful in many areas of medicine and biology, Bayesian methods are particularly attractive tools for the design of clinical trials and diagnostic tests, which are based on established information, usually from related previous studies. Advanced Bayesian Methods for Medical Test Accuracy begins with a review of the usual measures such as specificity

Book Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing

Download or read book Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing written by Jean-Francois Giovannelli and published by John Wiley & Sons. This book was released on 2015-02-16 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this book is on "ill-posed inverse problems". These problems cannot be solved only on the basis of observed data. The building of solutions involves the recognition of other pieces of a priori information. These solutions are then specific to the pieces of information taken into account. Clarifying and taking these pieces of information into account is necessary for grasping the domain of validity and the field of application for the solutions built. For too long, the interest in these problems has remained very limited in the signal-image community. However, the community has since recognized that these matters are more interesting and they have become the subject of much greater enthusiasm. From the application field’s point of view, a significant part of the book is devoted to conventional subjects in the field of inversion: biological and medical imaging, astronomy, non-destructive evaluation, processing of video sequences, target tracking, sensor networks and digital communications. The variety of chapters is also clear, when we examine the acquisition modalities at stake: conventional modalities, such as tomography and NMR, visible or infrared optical imaging, or more recent modalities such as atomic force imaging and polarized light imaging.

Book Biomedical Image Analysis

Download or read book Biomedical Image Analysis written by Scott Acton and published by Springer Nature. This book was released on 2022-06-01 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: The sequel to the popular lecture book entitled Biomedical Image Analysis: Tracking, this book on Biomedical Image Analysis: Segmentation tackles the challenging task of segmenting biological and medical images. The problem of partitioning multidimensional biomedical data into meaningful regions is perhaps the main roadblock in the automation of biomedical image analysis. Whether the modality of choice is MRI, PET, ultrasound, SPECT, CT, or one of a myriad of microscopy platforms, image segmentation is a vital step in analyzing the constituent biological or medical targets. This book provides a state-of-the-art, comprehensive look at biomedical image segmentation that is accessible to well-equipped undergraduates, graduate students, and research professionals in the biology, biomedical, medical, and engineering fields. Active model methods that have emerged in the last few years are a focus of the book, including parametric active contour and active surface models, active shape models, and geometric active contours that adapt to the image topology. Additionally, Biomedical Image Analysis: Segmentation details attractive new methods that use graph theory in segmentation of biomedical imagery. Finally, the use of exciting new scale space tools in biomedical image analysis is reported. Table of Contents: Introduction / Parametric Active Contours / Active Contours in a Bayesian Framework / Geometric Active Contours / Segmentation with Graph Algorithms / Scale-Space Image Filtering for Segmentation

Book Biomedical Image Analysis

Download or read book Biomedical Image Analysis written by Scott T. Acton and published by Springer Nature. This book was released on 2022-05-31 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: In biological and medical imaging applications, tracking objects in motion is a critical task. This book describes the state-of-the-art in biomedical tracking techniques. We begin by detailing methods for tracking using active contours, which have been highly successful in biomedical applications. The book next covers the major probabilistic methods for tracking. Starting with the basic Bayesian model, we describe the Kalman filter and conventional tracking methods that use centroid and correlation measurements for target detection. Innovations such as the extended Kalman filter and the interacting multiple model open the door to capturing complex biological objects in motion. A salient highlight of the book is the introduction of the recently emerged particle filter, which promises to solve tracking problems that were previously intractable by conventional means. Another unique feature of Biomedical Image Analysis: Tracking is the explanation of shape-based methods for biomedical image analysis. Methods for both rigid and nonrigid objects are depicted. Each chapter in the book puts forth biomedical case studies that illustrate the methods in action.

Book Medical Imaging Informatics

Download or read book Medical Imaging Informatics written by Alex A.T. Bui and published by Springer Science & Business Media. This book was released on 2009-12-01 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical Imaging Informatics provides an overview of this growing discipline, which stems from an intersection of biomedical informatics, medical imaging, computer science and medicine. Supporting two complementary views, this volume explores the fundamental technologies and algorithms that comprise this field, as well as the application of medical imaging informatics to subsequently improve healthcare research. Clearly written in a four part structure, this introduction follows natural healthcare processes, illustrating the roles of data collection and standardization, context extraction and modeling, and medical decision making tools and applications. Medical Imaging Informatics identifies core concepts within the field, explores research challenges that drive development, and includes current state-of-the-art methods and strategies.

Book Handbook of Biomedical Image Analysis

Download or read book Handbook of Biomedical Image Analysis written by David Wilson and published by Springer Science & Business Media. This book was released on 2007-04-25 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our goal is to develop automated methods for the segmentation of thr- dimensional biomedical images. Here, we describe the segmentation of c- focal microscopy images of bee brains (20 individuals) by registration to one or several atlas images. Registration is performed by a highly parallel imp- mentation of an entropy-based nonrigid registration algorithm using B-spline transformations. We present and evaluate different methods to solve the cor- spondence problem in atlas based registration. An image can be segmented by registering it to an individual atlas, an average atlas, or multiple atlases. When registering to multiple atlases, combining the individual segmentations into a ?nalsegmentationcanbeachievedbyatlasselection,ormulticlassi?erdecision fusion. Wedescribeallthesemethodsandevaluatethesegmentationaccuracies that they achieve by performing experiments with electronic phantoms as well as by comparing their outputs to a manual gold standard. The present work is focused on the mathematical and computational t- ory behind a technique for deformable image registration termed Hyperelastic Warping, and demonstration of the technique via applications in image regist- tion and strain measurement. The approach combines well-established prin- ples of nonlinear continuum mechanics with forces derived directly from thr- dimensional image data to achieve registration. The general approach does not require the de?nition of landmarks, ?ducials, or surfaces, although it can - commodate these if available. Representative problems demonstrate the robust and ?exible nature of the approach. Three-dimensional registration methods are introduced for registering MRI volumes of the pelvis and prostate. The chapter ?rst reviews the applications, xi xii Preface challenges, and previous methods of image registration in the prostate.

Book Computer Vision Approaches to Medical Image Analysis

Download or read book Computer Vision Approaches to Medical Image Analysis written by Reinhard R. Beichel and published by Springer Science & Business Media. This book was released on 2006-09-29 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post proceedings of the international workshop Computer Vision Approaches to Medical Image Analysis, CVAMIA 2006, held in Graz, Austria in May 2006 as a satellite event of the 9th European Conference on Computer Vision, EECV 2006. The 10 revised full papers and 11 revised poster papers presented together with one invited talk were carefully reviewed and selected from 38 submissions.

Book Pattern Recognition and Signal Analysis in Medical Imaging

Download or read book Pattern Recognition and Signal Analysis in Medical Imaging written by Anke Meyer-Baese and published by Elsevier. This book was released on 2014-03-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical imaging is one of the heaviest funded biomedical engineering research areas. The second edition of Pattern Recognition and Signal Analysis in Medical Imaging brings sharp focus to the development of integrated systems for use in the clinical sector, enabling both imaging and the automatic assessment of the resultant data. Since the first edition, there has been tremendous development of new, powerful technologies for detecting, storing, transmitting, analyzing, and displaying medical images. Computer-aided analytical techniques, coupled with a continuing need to derive more information from medical images, has led to a growing application of digital processing techniques in cancer detection as well as elsewhere in medicine. This book is an essential tool for students and professionals, compiling and explaining proven and cutting-edge methods in pattern recognition for medical imaging. - New edition has been expanded to cover signal analysis, which was only superficially covered in the first edition - New chapters cover Cluster Validity Techniques, Computer-Aided Diagnosis Systems in Breast MRI, Spatio-Temporal Models in Functional, Contrast-Enhanced and Perfusion Cardiovascular MRI - Gives readers an unparalleled insight into the latest pattern recognition and signal analysis technologies, modeling, and applications

Book Mathematics and Physics of Emerging Biomedical Imaging

Download or read book Mathematics and Physics of Emerging Biomedical Imaging written by National Research Council and published by National Academies Press. This book was released on 1996-02-28 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This cross-disciplinary book documents the key research challenges in the mathematical sciences and physics that could enable the economical development of novel biomedical imaging devices. It is hoped that the infusion of new insights from mathematical scientists and physicists will accelerate progress in imaging. Incorporating input from dozens of biomedical researchers who described what they perceived as key open problems of imaging that are amenable to attack by mathematical scientists and physicists, this book introduces the frontiers of biomedical imaging, especially the imaging of dynamic physiological functions, to the educated nonspecialist. Ten imaging modalities are covered, from the well-established (e.g., CAT scanning, MRI) to the more speculative (e.g., electrical and magnetic source imaging). For each modality, mathematics and physics research challenges are identified and a short list of suggested reading offered. Two additional chapters offer visions of the next generation of surgical and interventional techniques and of image processing. A final chapter provides an overview of mathematical issues that cut across the various modalities.

Book Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing

Download or read book Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing written by Jean-Francois Giovannelli and published by John Wiley & Sons. This book was released on 2015-02-02 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this book is on "ill-posed inverse problems". These problems cannot be solved only on the basis of observed data. The building of solutions involves the recognition of other pieces of a priori information. These solutions are then specific to the pieces of information taken into account. Clarifying and taking these pieces of information into account is necessary for grasping the domain of validity and the field of application for the solutions built. For too long, the interest in these problems has remained very limited in the signal-image community. However, the community has since recognized that these matters are more interesting and they have become the subject of much greater enthusiasm. From the application field’s point of view, a significant part of the book is devoted to conventional subjects in the field of inversion: biological and medical imaging, astronomy, non-destructive evaluation, processing of video sequences, target tracking, sensor networks and digital communications. The variety of chapters is also clear, when we examine the acquisition modalities at stake: conventional modalities, such as tomography and NMR, visible or infrared optical imaging, or more recent modalities such as atomic force imaging and polarized light imaging.

Book Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non Imaging Modalities

Download or read book Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non Imaging Modalities written by Danail Stoyanov and published by Springer. This book was released on 2018-09-15 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed joint proceedings of the Second International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2018 and the First International Workshop on Integrating Medical Imaging and Non-Imaging Modalities, Beyond MIC 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 6 full papers presented at GRAIL 2018 and the 5 full papers presented at BeYond MIC 2018 were carefully reviewed and selected. The GRAIL papers cover a wide range of develop graph-based models for the analysis of biomedical images and encourage the exploration of graph-based models for difficult clinical problems within a variety of biomedical imaging contexts. The Beyond MIC papers cover topics of novel methods with significant imaging and non-imaging components, addressing practical applications and new datasets

Book Handbook of Biomedical Image Analysis

Download or read book Handbook of Biomedical Image Analysis written by David Wilson and published by Springer Science & Business Media. This book was released on 2006-10-28 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Biomedical Image Analysis: Segmentation Models (Volume I) is dedicated to the segmentation of complex shapes from the field of imaging sciences using different mathematical techniques. This volume is aimed at researchers and educators in imaging sciences, radiological imaging, clinical and diagnostic imaging, physicists covering different medical imaging modalities, as well as researchers in biomedical engineering, applied mathematics, algorithmic development, computer vision, signal processing, computer graphics and multimedia in general, both in academia and industry . Key Features: - Principles of intra-vascular ultrasound (IVUS) - Principles of positron emission tomography (PET) - Physical principles of magnetic resonance angiography (MRA). - Basic and advanced level set methods - Shape for shading method for medical image analysis - Wavelet transforms and other multi-scale analysis functions - Three dimensional deformable surfaces - Level Set application for CT lungs, brain MRI and MRA volume segmentation - Segmentation of incomplete tomographic medical data sets - Subjective level sets for missing boundaries for segmentation