Download or read book Rarefied Gas Dynamics written by Lei Wu and published by Springer Nature. This book was released on 2022-09-09 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights a comprehensive description of the numerical methods in rarefied gas dynamics, which has strong applications ranging from space vehicle re-entry, micro-electromechanical systems, to shale gas extraction. The book consists of five major parts: The fast spectral method to solve the Boltzmann collision operator for dilute monatomic gas and the Enskog collision operator for dense granular gas; The general synthetic iterative scheme to solve the kinetic equations with the properties of fast convergence and asymptotic preserving; The kinetic modeling of monatomic and molecular gases, and the extraction of critical gas parameters from the experiment of Rayleigh-Brillouin scattering; The assessment of the fluid-dynamics equations derived from the Boltzmann equation and typical kinetic gas-surface boundary conditions; The applications of the fast spectral method and general synthetic iterative scheme to reveal the dynamics in some canonical rarefied gas flows. The book is suitable for postgraduates and researchers interested in rarefied gas dynamics and provides many numerical codes for them to begin with.
Download or read book Direct Modeling For Computational Fluid Dynamics Construction And Application Of Unified Gas kinetic Schemes written by Kun Xu and published by World Scientific. This book was released on 2014-12-23 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational fluid dynamics (CFD) studies the flow motion in a discretized space. Its basic scale resolved is the mesh size and time step. The CFD algorithm can be constructed through a direct modeling of flow motion in such a space. This book presents the principle of direct modeling for the CFD algorithm development, and the construction unified gas-kinetic scheme (UGKS). The UGKS accurately captures the gas evolution from rarefied to continuum flows. Numerically it provides a continuous spectrum of governing equation in the whole flow regimes.
Download or read book Computer Simulation of Condensed Phases in Complex Geometries written by Martin Schoen and published by Springer Science & Business Media. This book was released on 2008-09-11 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecularly small confined phases play an important role in many scientific and engineering disciplines. For instance, the confining membrane of a living cell is known to affect the structure and transport of cellular water, which mediates the cell's metabolism and other biochemical processes. Transport of hazardous waste through the soil is strongly influenced by the adsorption of bulk phase molecules on the confining mineral _surfaces. Finally, molecularly thin confined fluid films play a prominent part in lubrication. These examples illustrate the broad range of natural and commercial processes to which the present subject pertains. Much experimental effort has been devoted to molecularly small confined phases, revealing the intriguing nature of such systems. Several sections of this book are therefore devoted to descriptions of experimental techniques. To date even the most refined experiments do not yield direct information about structure and processes on the molecular scale. Computer simulations, on the other hand, do give such information and therefore complement real laboratory experiments. Several sections of this book discuss the link between experiments and the corre sponding simulations.
Download or read book Quantum Gases written by Nick Proukakis and published by World Scientific. This book was released on 2013 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.
Download or read book Fundamentals of Modeling for Metals Processing written by David U. Furrer and published by . This book was released on 2009 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook provides an overview of the development of models of metallic materials and how the materials are affected by processing. This knowledge is central to understanding of the behaviour of existing alloys and the development of new materials that affect nearly every manufacturing industry. Background on fundamental modeling methods provides the user with a solid foundation of the underlying physics that support the mechanistic method of many industrial simulation software packages. The phenomenological method is given equal coverage
Download or read book ASM Handbook written by and published by . This book was released on 1990 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: These volumes cover the properties, processing, and applications of metals and nonmetallic engineering materials. They are designed to provide the authoritative information and data necessary for the appropriate selection of materials to meet critical design and performance criteria.
Download or read book Physics Briefs written by and published by . This book was released on 1994 with total page 1248 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Mathematical Fluid Dynamics written by S. Friedlander and published by Gulf Professional Publishing. This book was released on 2003-03-27 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.
Download or read book Lattice Gas Cellular Automata and Lattice Boltzmann Models written by Dieter A. Wolf-Gladrow and published by Springer. This book was released on 2004-10-19 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
Download or read book The Lattice Boltzmann Method written by Timm Krüger and published by Springer. This book was released on 2016-11-07 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.
Download or read book Multiscale Thermo Dynamics written by Michal Pavelka and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-08-06 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: One common feature of new emerging technologies is the fusion of the very small (nano) scale and the large scale engineering. The classical environment provided by single scale theories, as for instance by the classical hydrodynamics, is not anymore satisfactory. The main challenge is to keep the important details while still be able to keep the overall picture and simplicity. It is the thermodynamics that addresses this challenge. Our main reason for writing this book is to explain such general viewpoint of thermodynamics and to illustrate it on a very wide range of examples. Contents Levels of description Hamiltonian mechanics Irreversible evolution Reversible and irreversible evolution Multicomponent systems Contact geometry Appendix: Mathematical aspects
Download or read book Statistical Mechanics of Lattice Systems written by Sacha Friedli and published by Cambridge University Press. This book was released on 2017-11-23 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.
Download or read book An Introduction to Statistical Mechanics and Thermodynamics written by Robert H. Swendsen and published by Oxford University Press. This book was released on 2012-03 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents statistical mechanics and thermodynamics as a theoretically integrated field of study. It stresses deep coverage of fundamentals, providing a natural foundation for advanced topics. The large problem sets (with solutions for teachers) include many computational problems to advance student understanding.
Download or read book Journal of Fluids Engineering written by and published by . This book was released on 1999 with total page 964 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Statistical Mechanics written by James Sethna and published by OUP Oxford. This book was released on 2006-04-07 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: In each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics - a field rooted in physics and chemistry whose ideas and methods are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe.
Download or read book Nonequilibrium Gas Dynamics and Molecular Simulation written by Iain D. Boyd and published by Cambridge University Press. This book was released on 2017-03-23 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: 7.1 Introduction -- 7.2 Rotational Energy Exchange Models -- 7.2.1 Constant Collision Number -- 7.2.2 The Parker Model -- 7.2.3 Variable Probability Exchange Model of Boyd -- 7.2.4 Nonequilibrium Direction Dependent Model -- 7.2.5 Model Results -- 7.3 Vibrational Energy Exchange Models -- 7.3.1 Constant Collision Number -- 7.3.2 The Millikan-White Model -- 7.3.3 Quantized Treatment for Vibration -- 7.3.4 Model Results -- 7.4 Dissociation Chemical Reactions -- 7.4.1 Total Collision Energy Model -- 7.4.2 Redistribution of Energy Following a Dissociation Reaction -- 7.4.3 Vibrationally Favored Dissociation Model -- 7.5 General Chemical Reactions -- 7.5.1 Reaction Rates and Equilibrium Constant -- 7.5.2 Backward Reaction Rates in DSMC -- 7.5.3 Three-Body Recombination Reactions -- 7.5.4 Post-Reaction Energy Redistribution and General Implementation -- 7.5.5 DSMC Solutions for Reacting Flows -- 7.6 Summary -- Appendix A: Generating Particle Properties -- Appendix B: Collisional Quantities -- Appendix C: Determining Post-Collision Velocities -- Appendix D: Macroscopic Properties -- Appendix E: Common Integrals -- References -- Index
Download or read book Rarefied Gas Dynamics written by Ching Shen and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerodynamics is a science engaged in the investigation of the motion of air and other gases and their interaction with bodies, and is one of the most important bases of the aeronautic and astronautic techniques. The continuous improvement of the configurations of the airplanes and the space vehicles aid the constant enhancement of their performances are closely related with the development of the aerodynamics. In the design of new flying vehicles the aerodynamics will play more and more important role. The undertakings of aeronautics and astronautics in our country have gained achievements of world interest, the aerodynamics community has made outstanding contributions for the development of these undertakings and the science of aerodynamics. To promote further the development of the aerodynamics, meet the challenge in the new century, summary the experience, cultivate the professional personnel and to serve better the cause of aeronautics and astronautics and the national economy, the present Series of Modern Aerodynamics is organized and published.