EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Neuronal Dynamics

    Book Details:
  • Author : Wulfram Gerstner
  • Publisher : Cambridge University Press
  • Release : 2014-07-24
  • ISBN : 1107060834
  • Pages : 591 pages

Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Book Advances in Stochastic Structural Dynamics

Download or read book Advances in Stochastic Structural Dynamics written by W. Q. Zhu and published by CRC Press. This book was released on 2003-05-13 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collection of technical papers presented at the 5th International Conference on Stochastic Structural Dynamics (SSD03) in Hangzhou, China during May 26-28, 2003. Topics include direct transfer substructure method for random response analysis, generation of bounded stochastic processes, and sample path behavior of Gaussian processes.

Book Dynamic Models in Biology

    Book Details:
  • Author : Stephen P. Ellner
  • Publisher : Princeton University Press
  • Release : 2011-09-19
  • ISBN : 1400840961
  • Pages : 352 pages

Download or read book Dynamic Models in Biology written by Stephen P. Ellner and published by Princeton University Press. This book was released on 2011-09-19 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models--the sort usually found in mathematical biology texts--and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering.

Book Deterministic and Stochastic Approaches in Computer Modeling and Simulation

Download or read book Deterministic and Stochastic Approaches in Computer Modeling and Simulation written by Romansky, Radi Petrov and published by IGI Global. This book was released on 2023-10-09 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the field of computer modeling and simulation, academic scholars face a pressing challenge—how to navigate the complex landscape of both deterministic and stochastic approaches to modeling. This multifaceted arena demands a unified organizational framework, a comprehensive guide that can seamlessly bridge the gap between theory and practical application. Without such a resource, scholars may struggle to harness the full potential of computer modeling, leaving critical questions unanswered and innovative solutions undiscovered. Deterministic and Stochastic Approaches in Computer Modeling and Simulation serves as the definitive solution to the complex problem scholars encounter. By presenting a comprehensive and unified organizational approach, this book empowers academics to conquer the challenges of computer modeling with confidence. It not only provides a classification of modeling methods but also offers a formalized, step-by-step approach to conducting model investigations, starting from defining objectives to analyzing experimental results. For academic scholars seeking a holistic understanding of computer modeling, this book is the ultimate solution. It caters to the diverse needs of scholars by addressing both deterministic and stochastic approaches. Through its structured chapters, it guides readers from the very basics of computer systems investigation to advanced topics like stochastic analytical modeling and statistical modeling.

Book Stochastic Modelling of Reaction   Diffusion Processes

Download or read book Stochastic Modelling of Reaction Diffusion Processes written by Radek Erban and published by Cambridge University Press. This book was released on 2020-01-30 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical introduction to stochastic reaction-diffusion modelling is based on courses taught at the University of Oxford. The authors discuss the essence of mathematical methods which appear (under different names) in a number of interdisciplinary scientific fields bridging mathematics and computations with biology and chemistry. The book can be used both for self-study and as a supporting text for advanced undergraduate or beginning graduate-level courses in applied mathematics. New mathematical approaches are explained using simple examples of biological models, which range in size from simulations of small biomolecules to groups of animals. The book starts with stochastic modelling of chemical reactions, introducing stochastic simulation algorithms and mathematical methods for analysis of stochastic models. Different stochastic spatio-temporal models are then studied, including models of diffusion and stochastic reaction-diffusion modelling. The methods covered include molecular dynamics, Brownian dynamics, velocity jump processes and compartment-based (lattice-based) models.

Book Stochastic Ferromagnetism

Download or read book Stochastic Ferromagnetism written by Lubomir Banas and published by Walter de Gruyter. This book was released on 2013-12-18 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph examines magnetization dynamics at elevated temperatures which can be described by the stochastic Landau-Lifshitz-Gilbert equation (SLLG). The first part of the book studies the role of noise in finite ensembles of nanomagnetic particles: we show geometric ergodicity of a unique invariant measure of Gibbs type and study related properties of approximations of the SLLG, including time discretization and Ginzburg-Landau type penalization. In the second part we propose an implementable space-time discretization using random walks to construct a weak martingale solution of the corresponding stochastic partial differential equation which describes the magnetization process of infinite spin ensembles. The last part of the book is concerned with a macroscopic deterministic equation which describes temperature effects on macro-spins, i.e. expectations of the solutions to the SLLG. Furthermore, comparative computational studies with the stochastic model are included. We use constructive tools such as e.g. finite element methods to derive the theoretical results, which are then used for computational studies. The numerical experiments motivate an interesting interplay between inherent geometric and stochastic effects of the SLLG which still lack a rigorous analytical understanding: the role of space-time white noise, possible finite time blow-up behavior of solutions, long-time asymptotics, and effective dynamics.

Book The Cognitive Neurosciences  fifth edition

Download or read book The Cognitive Neurosciences fifth edition written by Michael S. Gazzaniga and published by MIT Press. This book was released on 2014-10-24 with total page 1187 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fifth edition of a work that defines the field of cognitive neuroscience, with entirely new material that reflects recent advances in the field. Each edition of this classic reference has proved to be a benchmark in the developing field of cognitive neuroscience. The fifth edition of The Cognitive Neurosciences continues to chart new directions in the study of the biological underpinnings of complex cognition—the relationship between the structural and physiological mechanisms of the nervous system and the psychological reality of the mind. It offers entirely new material, reflecting recent advances in the field. Many of the developments in cognitive neuroscience have been shaped by the introduction of novel tools and methodologies, and a new section is devoted to methods that promise to guide the field into the future—from sophisticated models of causality in brain function to the application of network theory to massive data sets. Another new section treats neuroscience and society, considering some of the moral and political quandaries posed by current neuroscientific methods. Other sections describe, among other things, new research that draws on developmental imaging to study the changing structure and function of the brain over the lifespan; progress in establishing increasingly precise models of memory; research that confirms the study of emotion and social cognition as a core area in cognitive neuroscience; and new findings that cast doubt on the so-called neural correlates of consciousness.

Book Computational Intelligence Methods for Bioinformatics and Biostatistics

Download or read book Computational Intelligence Methods for Bioinformatics and Biostatistics written by Elia Biganzoli and published by Springer Science & Business Media. This book was released on 2012-12-11 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-proceedings of the 8th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2011, held in Gargnano del Garda, Italy, in June/July 2011. The 19 papers, presented together with 2 keynote speeches, were carefully reviewed and selected from 24 submissions. The papers are organized in topical sections on statistical learning, genomics, computational intelligence for health at the edge, proteomics, intelligent clinical decision support systems (i-CDSS), bioinformatics, and data clustering.

Book Information based methods for neuroimaging  analyzing structure  function and dynamics

Download or read book Information based methods for neuroimaging analyzing structure function and dynamics written by Jesus M. Cortés and published by Frontiers Media SA. This book was released on 2015-05-07 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this Research Topic is to discuss the state of the art on the use of Information-based methods in the analysis of neuroimaging data. Information-based methods, typically built as extensions of the Shannon Entropy, are at the basis of model-free approaches which, being based on probability distributions rather than on specific expectations, can account for all possible non-linearities present in the data in a model-independent fashion. Mutual Information-like methods can also be applied on interacting dynamical variables described by time-series, thus addressing the uncertainty reduction (or information) in one variable by conditioning on another set of variables. In the last years, different Information-based methods have been shown to be flexible and powerful tools to analyze neuroimaging data, with a wide range of different methodologies, including formulations-based on bivariate vs multivariate representations, frequency vs time domains, etc. Apart from methodological issues, the information bit as a common unit represents a convenient way to open the road for comparison and integration between different measurements of neuroimaging data in three complementary contexts: Structural Connectivity, Dynamical (Functional and Effective) Connectivity, and Modelling of brain activity. Applications are ubiquitous, starting from resting state in healthy subjects to modulations of consciousness and other aspects of pathophysiology. Mutual Information-based methods have provided new insights about common-principles in brain organization, showing the existence of an active default network when the brain is at rest. It is not clear, however, how this default network is generated, the different modules are intra-interacting, or disappearing in the presence of stimulation. Some of these open-questions at the functional level might find their mechanisms on their structural correlates. A key question is the link between structure and function and the use of structural priors for the understanding of the functional connectivity measures. As effective connectivity is concerned, recently a common framework has been proposed for Transfer Entropy and Granger Causality, a well-established methodology originally based on autoregressive models. This framework can open the way to new theories and applications. This Research Topic brings together contributions from researchers from different backgrounds which are either developing new approaches, or applying existing methodologies to new data, and we hope it will set the basis for discussing the development and validation of new Information-based methodologies for the understanding of brain structure, function, and dynamics.

Book Dynamic Neuroscience

Download or read book Dynamic Neuroscience written by Zhe Chen and published by Springer. This book was released on 2017-12-27 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers.

Book From Neuron to Cognition via Computational Neuroscience

Download or read book From Neuron to Cognition via Computational Neuroscience written by Michael A. Arbib and published by MIT Press. This book was released on 2016-11-04 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition. This textbook presents a wide range of subjects in neuroscience from a computational perspective. It offers a comprehensive, integrated introduction to core topics, using computational tools to trace a path from neurons and circuits to behavior and cognition. Moreover, the chapters show how computational neuroscience—methods for modeling the causal interactions underlying neural systems—complements empirical research in advancing the understanding of brain and behavior. The chapters—all by leaders in the field, and carefully integrated by the editors—cover such subjects as action and motor control; neuroplasticity, neuromodulation, and reinforcement learning; vision; and language—the core of human cognition. The book can be used for advanced undergraduate or graduate level courses. It presents all necessary background in neuroscience beyond basic facts about neurons and synapses and general ideas about the structure and function of the human brain. Students should be familiar with differential equations and probability theory, and be able to pick up the basics of programming in MATLAB and/or Python. Slides, exercises, and other ancillary materials are freely available online, and many of the models described in the chapters are documented in the brain operation database, BODB (which is also described in a book chapter). Contributors Michael A. Arbib, Joseph Ayers, James Bednar, Andrej Bicanski, James J. Bonaiuto, Nicolas Brunel, Jean-Marie Cabelguen, Carmen Canavier, Angelo Cangelosi, Richard P. Cooper, Carlos R. Cortes, Nathaniel Daw, Paul Dean, Peter Ford Dominey, Pierre Enel, Jean-Marc Fellous, Stefano Fusi, Wulfram Gerstner, Frank Grasso, Jacqueline A. Griego, Ziad M. Hafed, Michael E. Hasselmo, Auke Ijspeert, Stephanie Jones, Daniel Kersten, Jeremie Knuesel, Owen Lewis, William W. Lytton, Tomaso Poggio, John Porrill, Tony J. Prescott, John Rinzel, Edmund Rolls, Jonathan Rubin, Nicolas Schweighofer, Mohamed A. Sherif, Malle A. Tagamets, Paul F. M. J. Verschure, Nathan Vierling-Claasen, Xiao-Jing Wang, Christopher Williams, Ransom Winder, Alan L. Yuille

Book Neuro informatics and Neural Modelling

Download or read book Neuro informatics and Neural Modelling written by F. Moss and published by Gulf Professional Publishing. This book was released on 2001-06-26 with total page 1081 pages. Available in PDF, EPUB and Kindle. Book excerpt: How do sensory neurons transmit information about environmental stimuli to the central nervous system? How do networks of neurons in the CNS decode that information, thus leading to perception and consciousness? These questions are among the oldest in neuroscience. Quite recently, new approaches to exploration of these questions have arisen, often from interdisciplinary approaches combining traditional computational neuroscience with dynamical systems theory, including nonlinear dynamics and stochastic processes. In this volume in two sections a selection of contributions about these topics from a collection of well-known authors is presented. One section focuses on computational aspects from single neurons to networks with a major emphasis on the latter. The second section highlights some insights that have recently developed out of the nonlinear systems approach.

Book Deterministic Artificial Intelligence

Download or read book Deterministic Artificial Intelligence written by Timothy Sands and published by BoD – Books on Demand. This book was released on 2020-05-27 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kirchhoff’s laws give a mathematical description of electromechanics. Similarly, translational motion mechanics obey Newton’s laws, while rotational motion mechanics comply with Euler’s moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research culminating here with a text on the ability to make rigid bodies in rotation become self-aware, and even learn. This book is meant for basic scientifically inclined readers commencing with a first chapter on the basics of stochastic artificial intelligence to bridge readers to very advanced topics of deterministic artificial intelligence, espoused in the book with applications to both electromechanics (e.g. the forced van der Pol equation) and also motion mechanics (i.e. Euler’s moment equations). The reader will learn how to bestow self-awareness and express optimal learning methods for the self-aware object (e.g. robot) that require no tuning and no interaction with humans for autonomous operation. The topics learned from reading this text will prepare students and faculty to investigate interesting problems of mechanics. It is the fondest hope of the editor and authors that readers enjoy the book.

Book The Noisy Brain

Download or read book The Noisy Brain written by Edmund T. Rolls and published by . This book was released on 2010-01-28 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: The activity of neurons in the brain is noisy in that the neuronal firing times are random for a given mean rate. The Noisy Brain shows that this is fundamental to understanding many aspects of brain function, including probabilistic decision-making, perception, memory recall, short-term memory, attention, and even creativity. There are many applications too of this understanding, to for example memory and attentional disorders, aging, schizophrenia, and obsessive-compulsive disorder.

Book Trends in Biomathematics  Modeling Epidemiological  Neuronal  and Social Dynamics

Download or read book Trends in Biomathematics Modeling Epidemiological Neuronal and Social Dynamics written by Rubem P. Mondaini and published by Springer Nature. This book was released on 2023-07-24 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers together selected peer-reviewed works presented at the BIOMAT 2022 International Symposium, which was virtually held on November 7-11, 2022, with an organization staff based in Rio de Janeiro, Brazil. Topics touched on in this volume include infection spread in a population described by an agent-based approach; the study of gene essentiality via network-based computational modeling; stochastic models of neuronal dynamics; and the modeling of a statistical distribution of amino acids in protein domain families. The reader will also find texts in epidemic models with dynamic social distancing; with no vertical transmission; and with general incidence rates. Aspects of COVID-19 dynamics: the use of an SEIR model to analyze its spread in Brazil; the age-dependent manner of modeling its spread pattern; the impact of media awareness programs; and a web-based computational tool for Non-invasive hemodynamics evaluation of coronary stenosis are also covered. Held every year since 2001, The BIOMAT International Symposium gathers together, in a single conference, researchers from Mathematics, Physics, Biology, and affine fields to promote the interdisciplinary exchange of results, ideas and techniques, promoting truly international cooperation for problem discussion. BIOMAT volumes published from 2017 to 2021 are also available by Springer.

Book Noise in Complex Systems and Stochastic Dynamics II

Download or read book Noise in Complex Systems and Stochastic Dynamics II written by Zoltán Gingl and published by SPIE-International Society for Optical Engineering. This book was released on 2004 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.

Book Central Auditory Processing and Neural Modeling

Download or read book Central Auditory Processing and Neural Modeling written by Paul F. Poon and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: The full power of combining experiment and theory has yet to be unleashed on studies of the neural mechanisms in the brain involved in acoustic information processing. In recent years, enormous amounts of physiological data have been generated in many laboratories around the world, characterizing electrical responses of neurons to a wide array of acoustic stimuli at all levels of the auditory neuroaxis. Modern approaches of cellular and molecular biology are leading to new understandings of synaptic transmission of acoustic information, while application of modern neuro-anatomical methods is giving us a fairly comprehensive view ofthe bewildering complexity of neural circuitry within and between the major nuclei of the central auditory pathways. Although there is still the need to gather more data at all levels of organization, a ma jor challenge in auditory neuroscience is to develop new frameworks within which existing and future data can be incorporated and unified, and which will guide future laboratory ex perimentation. Here the field can benefit greatly from neural modeling, which in the central auditory system is still in its infancy. Indeed, such an approach is essential if we are to address questions related to perception of complex sounds including human speech, to the many di mensions of spatial hearing, and to the mechanisms that underlie complex acoustico-motor behaviors.