Download or read book HCCI and CAI Engines for the Automotive Industry written by Hua Zhao and published by CRC Press. This book was released on 2007-09-10 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous charge compression ignition (HCCI)/controlled auto-ignition (CAI) has emerged as one of the most promising engine technologies with the potential to combine fuel efficiency and improved emissions performance, offering reduced nitrous oxides and particulate matter alongside efficiency comparable with modern diesel engines. Despite the considerable advantages, its operational range is rather limited and controlling the combustion (timing of ignition and rate of energy release) is still an area of on-going research. Commercial applications are, however, close to reality. HCCI a.
Download or read book Control and Robustness Analysis of Homogeneous Charge Compression Ignition Using Exhaust Recompression written by Hsien-Hsin Liao and published by Stanford University. This book was released on 2011 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been an enormous global research effort to alleviate the current and projected environmental consequences incurred by internal combustion (IC) engines, the dominant propulsion systems in ground vehicles. Two technologies have the potential to improve the efficiency and emissions of IC engines in the near future: variable valve actuation (VVA) and homogeneous charge compression ignition (HCCI). IC engines equipped with VVA systems are proven to show better performance by adjusting the valve lift and timing appropriately. An electro-hydraulic valve system (EHVS) is a type of VVA system that possesses full flexibility, i.e., the ability to change the valve lift and timing independently and continuously, making it an ideal rapid prototyping tool in a research environment. Unfortunately, an EHVS typically shows a significant response time delay that limits the achievable closed-loop bandwidth and, as a result, shows poor tracking performance. In this thesis, a control framework that includes system identification, feedback control design, and repetitive control design is presented. The combined control law shows excellent performance with a root-mean-square tracking error below 40 [Mu]m over a maximum valve lift of 4 mm. A stability analysis is also provided to show that the mean tracking error converges to zero asymptotically with the combined control law. HCCI, the other technology presented in this thesis, is a combustion strategy initiated by compressing a homogeneous air-fuel mixture to auto-ignition, therefore, ignition occurs at multiple points inside the cylinder without noticeable flame propagation. The result is rapid combustion with low peak in-cylinder temperature, which gives HCCI improved efficiency and reduces NOx formation. To initiate HCCI with a typical compression ratio, the sensible energy of the mixture needs to be high compared to a spark ignited (SI) strategy. One approach to achieve this, called recompression HCCI, is by closing the exhaust valve early to trap a portion of the exhaust gas in the cylinder. Unlike a SI or Diesel strategy, HCCI lacks an explicit combustion trigger, as autoignition is governed by chemical kinetics. Therefore, the thermo-chemical conditions of the air-fuel mixture need to be carefully controlled for HCCI to occur at the desired timing. Compounding this challenge in recompression HCCI is the re-utilization of the exhaust gas which creates cycle-to-cycle coupling. Furthermore, the coupling characteristics can change drastically around different operating points, making combustion timing control difficult across a wide range of conditions. In this thesis, a graphical analysis examines the in-cylinder temperature dynamics of recompression HCCI and reveals three qualitative types of temperature dynamics. With this insight, a switching linear model is formulated by combining three linear models: one for each of the three types of temperature dynamics. A switching controller that is composed of three local linear feedback controllers can then be designed based on the switching model. This switching model/control formulation is tested on an experimental HCCI testbed and shows good performance in controlling the combustion timing across a wide range. A semi-definite program is formulated to find a Lyapunov function for the switching model/control framework and shows that it is stable. As HCCI is dictated by the in-cylinder thermo-chemical conditions, there are further concerns about the robustness of HCCI, i.e., the boundedness of the thermo-chemical conditions with uncertainty existing in the ambient conditions and in the engine's own characteristics due to aging. To assess HCCI's robustness, this thesis presents a linear parameter varying (LPV) model that captures the dynamics of recompression HCCI and possesses an elegant model structure that is more amenable to analysis. Based on this model, a recursive algorithm using convex optimization is formulated to generate analytical statements about the boundedness of the in-cylinder thermo-chemical conditions. The bounds generated by the algorithm are also shown to relate well to the data from the experimental testbed.
Download or read book Homogeneous Charge Compression Ignition HCCI Engines written by Fuquan Zhao and published by SAE International. This book was released on 2003-01-01 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: The homogeneous charge, compression-ignition (HCCI) combustion process has the potential to significantly reduce NOx and particulate emissions, while achieving high thermal efficiency and the capability of operating with a wide variety of fuels. This makes the HCCI engine an attractive technology that can ostensibly provide diesel-like fuel efficiency and very low emissions, which may allow emissions compliance to occur without relying on lean aftertreatment systems. A profound increase in the level of research and development of this technology has occurred in the last decade. This book gathers contributions from experts in both industry and academia, providing a basic introduction to the state-of-the-art of HCCI technology, a critical review of current HCCI research and development efforts, and perspective for the future. Chapters cover: Gasoline-Fueled HCCI Engines; Diesel-Fueled HCCI Engines; Alternative Fuels and Fuel Additives for HCCI Engines; HCCI Control and Operating Range Extension; Kinetics of HCCI Combustion; HCCI Engine Modeling Approaches.In addition to the extensive overview of terminology, physical processes, and future needs, each chapter also features select SAE papers (a total of 41 are included in the book), as well as a comprehensive list of references related to the subjects. Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues provides a valuable base of information for those interested in learning about this rapidly-progressing technology which has the potential to enhance fuel economy and reduce emissions.
Download or read book Advances in Internal Combustion Engine Research written by Dhananjay Kumar Srivastava and published by Springer. This book was released on 2017-11-29 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses all aspects of advanced engine technologies, and describes the role of alternative fuels and solution-based modeling studies in meeting the increasingly higher standards of the automotive industry. By promoting research into more efficient and environment-friendly combustion technologies, it helps enable researchers to develop higher-power engines with lower fuel consumption, emissions, and noise levels. Over the course of 12 chapters, it covers research in areas such as homogeneous charge compression ignition (HCCI) combustion and control strategies, the use of alternative fuels and additives in combination with new combustion technology and novel approaches to recover the pumping loss in the spark ignition engine. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.
Download or read book Assessment of Fuel Economy Technologies for Light Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2011-06-03 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.
Download or read book Introduction to Modeling and Control of Internal Combustion Engine Systems written by Lino Guzzella and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.
Download or read book Diesel Engine System Design written by Qianfan Xin and published by Elsevier. This book was released on 2011-05-26 with total page 1087 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diesel Engine System Design links everything diesel engineers need to know about engine performance and system design in order for them to master all the essential topics quickly and to solve practical design problems. Based on the author's unique experience in the field, it enables engineers to come up with an appropriate specification at an early stage in the product development cycle. - Links everything diesel engineers need to know about engine performance and system design featuring essential topics and techniques to solve practical design problems - Focuses on engine performance and system integration including important approaches for modelling and analysis - Explores fundamental concepts and generic techniques in diesel engine system design incorporating durability, reliability and optimization theories
Download or read book Internal Combustion Engines Improving Performance Fuel Economy and Emissions written by Federico Millo and published by Mdpi AG. This book was released on 2020-10-02 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Special Issue, consisting of 14 papers, presents the latest findings concerning both numerical and experimental investigations. Their aim is to achieve a reduction in pollutant emissions, as well as an improvement in fuel economy and performance, for internal combustion engines. This will provide readers with a comprehensive, unbiased, and scientifically sound overview of the most recent research and technological developments in this field. More specific topics include: 3D CFD detailed analysis of the fuel injection, combustion and exhaust aftertreatments processes, 1D and 0D, semi-empirical, neural network-based control-oriented models, experimental analysis and the optimization of both conventional and innovative combustion processes.
Download or read book Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance written by Richard Folkson and published by Woodhead Publishing. This book was released on 2022-07-27 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: Towards Zero Carbon Transportation, Second Edition provides a comprehensive view of key developments in advanced fuels and vehicle technologies to improve the energy efficiency and environmental impact of the automotive sector. Sections consider the role of alternative fuels such as electricity, alcohol and hydrogen fuel cells, as well as advanced additives and oils in environmentally sustainable transport. Other topics explored include methods of revising engine and vehicle design to improve environmental performance and fuel economy and developments in electric and hybrid vehicle technologies. This reference will provide professionals, engineers and researchers of alternative fuels with an understanding of the latest clean technologies which will help them to advance the field. Those working in environmental and mechanical engineering will benefit from the detailed analysis of the technologies covered, as will fuel suppliers and energy producers seeking to improve the efficiency, sustainability and accessibility of their work. - Provides a fully updated reference with significant technological advances and developments in the sector - Presents analyses on the latest advances in electronic systems for emissions control, autonomous systems, artificial intelligence and legislative requirements - Includes a strong focus on updated climate change predictions and consequences, helping the reader work towards ambitious 2050 climate change goals for the automotive industry
Download or read book Gasoline Compression Ignition Technology written by Gautam Kalghatgi and published by Springer Nature. This book was released on 2022-01-17 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on gasoline compression ignition (GCI) which offers the prospect of engines with high efficiency and low exhaust emissions at a lower cost. A GCI engine is a compression ignition (CI) engine which is run on gasoline-like fuels (even on low-octane gasoline), making it significantly easier to control particulates and NOx but with high efficiency. The state of the art development to make GCI combustion feasible on practical vehicles is highlighted, e.g., on overcoming problems on cold start, high-pressure rise rates at high loads, transients, and HC and CO emissions. This book will be a useful guide to those in academia and industry.
Download or read book Natural Gas Engines written by Kalyan Kumar Srinivasan and published by Springer. This book was released on 2018-11-03 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the various advanced reciprocating combustion engine technologies that utilize natural gas and alternative fuels for transportation and power generation applications. It is divided into three major sections consisting of both fundamental and applied technologies to identify (but not limited to) clean, high-efficiency opportunities with natural gas fueling that have been developed through experimental protocols, numerical and high-performance computational simulations, and zero-dimensional, multizone combustion simulations. Particular emphasis is placed on statutes to monitor fine particulate emissions from tailpipe of engines operating on natural gas and alternative fuels.
Download or read book The Exergy Method of Thermal Plant Analysis written by T. J. Kotas and published by Elsevier. This book was released on 2013-10-22 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Exergy Method of Thermal Plant Analysis aims to discuss the history, related concepts, applications, and development of the Exergy Method - analysis technique that uses the Second Law of Thermodynamics as the basis of evaluation of thermodynamic loss. The book, after an introduction to thermodynamics and its related concepts, covers concepts related to exergy, such as physical and chemical exergy, exergy concepts for a control method and a closed-system analysis, the exergy analysis of simple processes, and the thermocentric applications of exergy. A seven-part appendix is also included. Appendices A-D covers miscellaneous information on exergy, and Appendix E features charts of thermodynamic properties. Appendix F is a glossary of terms, and Appendix G contains the list of references. The text is recommended for physicists who would like to know more about the Exergy Method, its underlying principles, and its applications not only in thermal plant analysis but also in certain areas.
Download or read book Cost Effectiveness and Deployment of Fuel Economy Technologies for Light Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2015-09-28 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.
Download or read book Mixture Formation in Internal Combustion Engines written by Carsten Baumgarten and published by Springer Science & Business Media. This book was released on 2006-09-28 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic control of mixture formation with modern high-pressure injection systems enables us to achieve considerable improvements of the combustion pr- ess in terms of reduced fuel consumption and engine-out raw emissions. However, because of the growing number of free parameters due to more flexible injection systems, variable valve trains, the application of different combustion concepts within different regions of the engine map, etc., the prediction of spray and m- ture formation becomes increasingly complex. For this reason, the optimization of the in-cylinder processes using 3D computational fluid dynamics (CFD) becomes increasingly important. In these CFD codes, the detailed modeling of spray and mixture formation is a prerequisite for the correct calculation of the subsequent processes like ignition, combustion and formation of emissions. Although such simulation tools can be viewed as standard tools today, the predictive quality of the sub-models is c- stantly enhanced by a more accurate and detailed modeling of the relevant pr- esses, and by the inclusion of new important mechanisms and effects that come along with the development of new injection systems and have not been cons- ered so far. In this book the most widely used mathematical models for the simulation of spray and mixture formation in 3D CFD calculations are described and discussed. In order to give the reader an introduction into the complex processes, the book starts with a description of the fundamental mechanisms and categories of fuel - jection, spray break-up, and mixture formation in internal combustion engines.
Download or read book Fundamentals of Combustion Processes written by Sara McAllister and published by Springer Science & Business Media. This book was released on 2011-05-10 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Combustion Processes is designed as a textbook for an upper-division undergraduate and graduate level combustion course in mechanical engineering. The authors focus on the fundamental theory of combustion and provide a simplified discussion of basic combustion parameters and processes such as thermodynamics, chemical kinetics, ignition, diffusion and pre-mixed flames. The text includes exploration of applications, example exercises, suggested homework problems and videos of laboratory demonstrations
Download or read book Homogeneous Charge Compression Ignition HCCI written by and published by . This book was released on 2004 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Automotive Model Predictive Control written by Luigi Del Re and published by Springer. This book was released on 2010-03-11 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automotive control has developed over the decades from an auxiliary te- nology to a key element without which the actual performances, emission, safety and consumption targets could not be met. Accordingly, automotive control has been increasing its authority and responsibility – at the price of complexity and di?cult tuning. The progressive evolution has been mainly ledby speci?capplicationsandshorttermtargets,withthe consequencethat automotive control is to a very large extent more heuristic than systematic. Product requirements are still increasing and new challenges are coming from potentially huge markets like India and China, and against this ba- ground there is wide consensus both in the industry and academia that the current state is not satisfactory. Model-based control could be an approach to improve performance while reducing development and tuning times and possibly costs. Model predictive control is a kind of model-based control design approach which has experienced a growing success since the middle of the 1980s for “slow” complex plants, in particular of the chemical and process industry. In the last decades, severaldevelopments haveallowedusing these methods also for “fast”systemsandthis hassupporteda growinginterestinitsusealsofor automotive applications, with several promising results reported. Still there is no consensus on whether model predictive control with its high requi- ments on model quality and on computational power is a sensible choice for automotive control.