EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design Techniques for Oscillator Phase Noise Reduction

Download or read book Design Techniques for Oscillator Phase Noise Reduction written by Ahmad Faizal Ab Talib and published by . This book was released on 2006 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Low Noise Low Power Design for Phase Locked Loops

Download or read book Low Noise Low Power Design for Phase Locked Loops written by Feng Zhao and published by Springer. This book was released on 2014-11-25 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces low-noise and low-power design techniques for phase-locked loops and their building blocks. It summarizes the noise reduction techniques for fractional-N PLL design and introduces a novel capacitive-quadrature coupling technique for multi-phase signal generation. The capacitive-coupling technique has been validated through silicon implementation and can provide low phase-noise and accurate I-Q phase matching, with low power consumption from a super low supply voltage. Readers will be enabled to pick one of the most suitable QVCO circuit structures for their own designs, without additional effort to look for the optimal circuit structure and device parameters.

Book The Designer s Guide to High Purity Oscillators

Download or read book The Designer s Guide to High Purity Oscillators written by Emad Eldin Hegazi and published by Springer Science & Business Media. This book was released on 2006-07-18 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: try to predict it using mathematical expressions. His heuristic model without mathematical proof is almost universally accepted. However, it entails a c- cuit specific noise factor that is not known a priori and so is not predictive. In this work, we attempt to address the topic of oscillator design from a diff- ent perspective. By introducing a new paradigm that accurately captures the subtleties of phase noise we try to answer the question: 'why do oscillators behave in a particular way?' and 'what can be done to build an optimum design?' It is also hoped that the paradigm is useful in other areas of circuit design such as frequency synthesis and clock recovery. In Chapter 1, a general introduction and motivation to the subject is presented. Chapter 2 summarizes the fundamentals of phase noise and timing jitter and discusses earlier works on oscillator's phase noise analysis. Chapter 3 and Chapter 4 analyze the physical mechanisms behind phase noise generation in current-biased and Colpitts oscillators. Chapter 5 discusses design trade-offs and new techniques in LC oscillator design that allows optimal design. Chapter 6 and Chapter 7 discuss a topic that is typically ignored in oscillator design. That is flicker noise in LC oscillators. Finally, Chapter 8 is dedicated to the complete analysis of the role of varactors both in tuning and AM-FM noise conversion.

Book RF and Microwave Transistor Oscillator Design

Download or read book RF and Microwave Transistor Oscillator Design written by Andrei Grebennikov and published by John Wiley & Sons. This book was released on 2007-04-30 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increase of consumer electronics and communications applications using Radio Frequency (RF) and microwave circuits has implications for oscillator design. Applications working at higher frequencies and using novel technologies have led to a demand for more robust circuits with higher performance and functionality, but decreased costs, size and power consumption. As a result, there is also a need for more efficient oscillators. This book presents up to date information on all aspects of oscillator design, enabling a selection of the best oscillator topologies with optimized noise reduction and electrical performance. RF and Microwave Transistor Oscillator Design covers: analyses of non-linear circuit design methods including spectral-domain analysis, time-domain analysis and the quasilinear method; information on noise in oscillators including chapters on varactor and oscillator frequency tuning, CMOS voltage-controlled oscillators and wideband voltage-controlled oscillators; information on the stability of oscillations, with discussions on the stability of multi-resonant circuits and the phase plane method; optimized design and circuit techniques, beginning with the empirical and analytic design approaches, moving on to the high-efficiency design technique; general operation and design principles of oscillators, including a section on the historical aspects of oscillator configurations. A valuable reference for practising RF and Microwave designers and engineers, RF and Microwave Transistor Oscillator Design is also useful for lecturers, advanced students and research and design (R&D) personnel.

Book Transformer Based Design Techniques for Oscillators and Frequency Dividers

Download or read book Transformer Based Design Techniques for Oscillators and Frequency Dividers written by Howard Cam Luong and published by Springer. This book was released on 2015-10-07 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides in-depth coverage of transformer-based design techniques that enable CMOS oscillators and frequency dividers to achieve state-of-the-art performance. Design, optimization, and measured performance of oscillators and frequency dividers for different applications are discussed in detail, focusing on not only ultra-low supply voltage but also ultra-wide frequency tuning range and locking range. This book will be an invaluable reference for anyone working or interested in CMOS radio-frequency or mm-Wave integrated circuits and systems.

Book Design of High Performance CMOS Voltage Controlled Oscillators

Download or read book Design of High Performance CMOS Voltage Controlled Oscillators written by Liang Dai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.

Book Phase Noise Suppression Techniques for 5 6GHZ Oscillator Design

Download or read book Phase Noise Suppression Techniques for 5 6GHZ Oscillator Design written by Yang Zhang and published by . This book was released on 2007 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analysis and Design of Quadrature Oscillators

Download or read book Analysis and Design of Quadrature Oscillators written by Luis B. Oliveira and published by Springer Science & Business Media. This book was released on 2008-07-08 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern RF receivers and transmitters require quadrature oscillators with accurate quadrature and low phase-noise. Existing literature is dedicated mainly to single oscillators, and is strongly biased towards LC oscillators. This book is devoted to quadrature oscillatorsand presents adetailed comparative study ofLC and RCosc- lators, both at architectural and at circuit levels. It is shown that in cross-coupled RC oscillators both the quadrature error and phase-noise are reduced, whereas in LC - cillators the coupling decreases the quadrature error, but increases the phase-noise. Thus, quadrature RC oscillators can be a practical alternative to LC oscillators, - pecially when area and cost are to be minimized. The main topics of the book are: cross-coupled LC quasi-sinusoidal oscillators, cross-coupled RC relaxation oscillators, a quadrature RC oscillator-mixer, and t- integrator oscillators. The effect of mismatches on the phase-error and the pha- noise are thoroughly investigated. The book includes many experimental results, obtained from different integrated circuit prototypes, in the GHz range. A structured design approach is followed: a technology independent study, with ideal blocks, is performed initially, and then the circuit level design is addressed. This book can be used in advanced courses on RF circuit design. In addition to post-graduate students and lecturers, this book will be of interest to design engineers and researchers in this area.

Book A Novel Oscillator Phase Noise Reduction Technique

Download or read book A Novel Oscillator Phase Noise Reduction Technique written by Ali Mohamed Darwish and published by . This book was released on 1991 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Design of Low Noise Oscillators

Download or read book The Design of Low Noise Oscillators written by Ali Hajimiri and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is hardly a revelation to note that wireless and mobile communications have grown tremendously during the last few years. This growth has placed stringent requi- ments on channel spacing and, by implication, on the phase noise of oscillators. C- pounding the challenge has been a recent drive toward implementations of transceivers in CMOS, whose inferior 1/f noise performance has usually been thought to disqualify it from use in all but the lowest-performance oscillators. Low noise oscillators are also highly desired in the digital world, of course. The c- tinued drive toward higher clock frequencies translates into a demand for ev- decreasing jitter. Clearly, there is a need for a deep understanding of the fundamental mechanisms g- erning the process by which device, substrate, and supply noise turn into jitter and phase noise. Existing models generally offer only qualitative insights, however, and it has not always been clear why they are not quantitatively correct.

Book Design Techniques for Low Phase Noise MMIC Voltage Controlled Oscillators

Download or read book Design Techniques for Low Phase Noise MMIC Voltage Controlled Oscillators written by Massimo Pirazzini and published by . This book was released on 2005 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design Techniques for Temperature Insensitive  Low Phase Noise Oscillator

Download or read book Design Techniques for Temperature Insensitive Low Phase Noise Oscillator written by Makrand Bhagwat Mahalley and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topics in LC Oscillators

Download or read book Topics in LC Oscillators written by Konstantinos Manetakis and published by Springer Nature. This book was released on 2023-07-21 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces an intuitive, self-sustained oscillator model and applies it to describe some of the most critical performance metrics of LC oscillators, such as phase noise, entrainment, and pulling. It also covers the related topics of magnetic coupling and inductor design. The author emphasizes the basic principles and illuminates them with approximate calculations, adopting a design-oriented approach that imparts intuition and complements simulations. This book constitutes a novel and fresh perspective on the subject and can be helpful to electrical engineering students and practicing engineers. It also serves as a bridge between the mathematical treatises of the subject and the more practical circuit-oriented approaches.

Book RF CMOS Oscillators for Modern Wireless Applications

Download or read book RF CMOS Oscillators for Modern Wireless Applications written by Masoud Babaie and published by CRC Press. This book was released on 2022-09-01 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: While mobile phones enjoy the largest production volume ever of any consumer electronics products, the demands they place on radio-frequency (RF) transceivers are particularly aggressive, especially on integration with digital processors, low area, low power consumption, while being robust against process-voltage-temperature variations. Since mobile terminals inherently operate on batteries, their power budget is severely constrained. To keep up with the ever increasing data-rate, an ever-decreasing power per bit is required to maintain the battery lifetime. The RF oscillator is the second most power-hungry block of a wireless radio (after power amplifiers). Consequently, any power reduction in an RF oscillator will greatly benefit the overall power efficiency of the cellular transceiver. Moreover, the RF oscillators' purity limits the transceiver performance. The oscillator's phase noise results in power leakage into adjacent channels in a transmit mode and reciprocal mixing in a receive mode. On the other hand, the multi-standard and multi-band transceivers that are now trending demand wide tuning range oscillators. However, broadening the oscillator’s tuning range is usually at the expense of die area (cost) or phase noise. The main goal of this book is to bring forth the exciting and innovative RF oscillator structures that demonstrate better phase noise performance, lower cost, and higher power efficiency than currently achievable. Technical topics discussed in RF CMOS Oscillators for Modern Wireless Applications include:  Design and analysis of low phase-noise class-F oscillators Analyze a technique to reduce 1/f noise up-conversion in the oscillators Design and analysis of low power/low voltage oscillators Wide tuning range oscillators Reliability study of RF oscillators in nanoscale CMOS

Book Low Phase Noise Oscillator Design  A Design Methodology for Improving Performance  Theoretical Analysis  CAD Simulations  and Prototype Building

Download or read book Low Phase Noise Oscillator Design A Design Methodology for Improving Performance Theoretical Analysis CAD Simulations and Prototype Building written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design of Low phase noise and Low power Current controlled Oscillators

Download or read book Design of Low phase noise and Low power Current controlled Oscillators written by Junhong Zhao and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analysis and Design of CMOS Clocking Circuits for Low Phase Noise

Download or read book Analysis and Design of CMOS Clocking Circuits for Low Phase Noise written by Woorham Bae and published by . This book was released on 2020 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: "As electronics continue to become faster, smaller and more efficient, development and research around clocking signals and circuits has accelerated to keep pace. This book bridges the gap between the classical theory of clocking circuits and recent technological advances, making it a useful guide for newcomers to the field, and offering an opportunity for established researchers to broaden and update their knowledge of current trends. The book begins by introducing the theory of Fourier transform and power spectral density, then builds on this foundation in chapter 2 to define phase noise and jitter. Chapter 3 discusses the theory and primary implementation of CMOS oscillators, including LC oscillators and ring oscillators, and chapter 4 introduces techniques for analysing their phase noise and jitter. Chapters 5-7 cover conventional clocking circuits; phase-locked loop (PLL) and delay-locked loop (DLL), which suppress the phase noise of CMOS oscillators. The building blocks of conventional PLLs/DLLs are described, and the dynamics of the PLL/DLL negative feedback loop explored in depth, with practical design examples. Chapters 8-11 address state-of-the-art circuit techniques for phase noise suppression, presenting the principles and practical issues in circuit implementation of sub-sampling phase detection techniques, all-digital PLL/DLL, injection-locked oscillator, and clock multiplying DLL. Extensive survey and discussion on state-of-the-art clocking circuits and benchmarks are covered in an Appendix"--