EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design Optimization of Magneto rheological Damper with Improved Dispersion Stability

Download or read book Design Optimization of Magneto rheological Damper with Improved Dispersion Stability written by Md Meftahul Ferdaus and published by . This book was released on 2015 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetorheological (MR) damper is one of the most advanced applications of semi active damper in controlling vibration. Due to its continuous controllability in both on and off state its practice is increasing day by day in the vehicle suspension system. MR damper's damping force can be controlled by changing the viscosity of its internal magnetorheological fluids (MRF). Still there are some problems with this damper such as MR fluid's sedimentation, optimal design configuration considering all components of the damper, power consumption and temperature rising etc. In this paper both 2-D Axisymmetric and 3-D models of MR Damper are built and finite element analysis is done widely for design optimization. Different configurations of MR damper piston, MR fluid gap, air gap and dampers housing are simulated for comparing the dampers performance variation. From the analytical results it is observed that among different configurations single coil MR damper with linear plastic air gap, top and bottom chamfered piston end and medium MR fluid gap shows better performance than other configurations by maintaining the same input current and piston velocity. Further a prototype MR fluid is developed experimentally where the carbonyl iron particles are coated with xanthan gum to reduce sedimentation and the experimental results are noticeably verifying the improved sedimentation stability. The performance of dampers' containing this new prototype MR fluid are observed by simulation models. Here the outcomes are obviously declaring damper improvement as they are delivering larger damping force compare to the MR damper with conventional fluid. In addition a power saving MR damper model has developed by finite element analysis using ANSYS software, this energy saving MR damper model is obviously showing the solution of damper's temperature rising problem. At last an experimental analysis is performed by using RD-8041-1 MR Damper. These results are compared with the optimized MR Damper's simulation results, which clearly validate the simulated results.

Book Analysis and testing of modified hydraulic semi active damper by magneto rheological approach

Download or read book Analysis and testing of modified hydraulic semi active damper by magneto rheological approach written by Khedkar Yashpal Marutirao and published by Book Rivers. This book was released on 2024-02-24 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design and Development of a Compressible Magneto rheological Damper

Download or read book Design and Development of a Compressible Magneto rheological Damper written by Pramod Raja and published by . This book was released on 2009 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this study is to assess the feasibility of a small-scale compressible magneto-rheological (CMR) damper for a tracked vehicle suspension system. The feature of the CMR damper combines the functions of a liquid spring and a controllable fluid damper together, which increases the mobility of these heavy vehicles while improving the stability and safety as well. The proposed CMR damper consists of a cylinder, piston-rod arrangement with an annular MR valve. The internal pressure in the chambers on either side of the piston develops the spring force. The damping force is developed when the fluid flows through the MR valve. A fluid-mechanics based model is considered to predict the behavior of the device under sinusoidal input. In addition, the non-dimensional analysis of the proposed model is presented which can be used as a tool for design analysis and scalability of the CMR dampers. The performance of the CMR damper filled with pure silicone oil and a MR fluid are studied under oscillatory vibrations for various frequencies and applied magnetic fields. Experimental results show good agreement with the theoretical predictions. The CMR damper generates a considerable spring rate and controllable damping force based on the required tracked vehicle specifications.

Book Design  Simulation  and Fabrication of a Lightweight Magneto Rheological Damper

Download or read book Design Simulation and Fabrication of a Lightweight Magneto Rheological Damper written by Soroush Sefidkar-Dezfouli and published by . This book was released on 2014 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mountain biking has significantly evolved recently, thanks to utilizing cutting-edge technologies in mountain bicycle design and fabrication. In this research we study development of a semi-active suspension system using magneto-rheological (MR) fluid dampers instead of conventional oil based shocks. MR dampers are devices with magnetic field dependent damping characteristics.Low power consumption, high controllability, quick response, and high durability are among the major features of MR dampers. In this work we first investigate the damping characteristics of MR dampers to find out if characteristics comparable to the conventional shocks used in mountain bikes can be achieved. To this end,experimental tests were performed on an off-the-shelf MR damper. The results indicate that damping characteristics similar to the ones used in mountain bikes can in fact be achieved using MR technology.However, requirements such as small weight and wide dynamic range have to be addressed in designing a MR damper for mountain bikes. These considerations are studied in this thesis by formulating a simple design followed by a constrained optimization problem and designing the damper accordingly. Utilizing Finite element modeling and simulation tools are further utilized to fine tune and optimize the design.A prototype MR damper is fabricated after the above design steps are carried out.

Book Design Semi active Suspension Using Magneto rheological Damper

Download or read book Design Semi active Suspension Using Magneto rheological Damper written by Muhamad Amzansani Abd Wahab and published by . This book was released on 2010 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focused on the development of semi- active suspension by using magneto-rheological damper. The MR damper is a type of damper that used MR fluid as working fluid which enables us to change damping force and setting of suspension without need to setting manually damper itself. It can be achieve by changing the current flow on it magnetic circuit.This thesis first introduces MR technology through a discussion of MR fluid and then by giving a broad overview of MR devices that is being developed. After giving the reader an understanding of MR technology and devices, MR damper basics are presented. This section includes a discussion of MR damper types, mathematical fundamentals, and an approach to magnetic circuit design. With the necessary background information covered, MR dampers for automotive use are then discussed. Then come to design part. By using specification same as Proton Waja passive damper, the model was develop by using SOLIDWORK software. The design used twin tube damper with same size of outer tube of OEM damper. The parameter like number of turn, length and diameter of the wire, current induced, magnetic field generated, head piston velocity, and force produced by MR damper was be calculated and discussed. The result show the damper produced 6475.441 Newton of maximum force when 3 ampere of current being applied to the damper. The force generated by damper at 0.5, 1, 1.5, 2, 2.5 and 3 ampere was plotted in a single graph versus piston head velocity in order to give better view of result.

Book Characterization and Application of Magneto sensitive Soft Materials

Download or read book Characterization and Application of Magneto sensitive Soft Materials written by Zhili Zhang and published by Frontiers Media SA. This book was released on 2023-09-29 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magneto-sensitive soft materials are new synthetic functional materials that is normally composed of ferromagnetic or ferrimagnetic particles (size in a range from several nanometers to hundreds of micrometers), carriers (including water, organic solvent, liquids, gels, polymer and foams), surfactants and necessary additives. Being different from “hard” solid materials, “soft” means magneto-sensitive materials exist in the form of colloidal liquids, gels, and elastomers, such as magnetic fluids (MF), also called ferrofluids, magnetic liquids, magnetorheological fluids (MRF), magnetorheological gels (MRG), magnetorheological elastomers (MRE) and magnetorheological foams (MRFoam), so as to possess fluidity and magnetism simultaneously and can be easily deformed by applying external magnetic field force.

Book Hybrid Magnetorheological Damper

    Book Details:
  • Author : Izyan Iryani Mohd Yazid
  • Publisher : LAP Lambert Academic Publishing
  • Release : 2013
  • ISBN : 9783659509865
  • Pages : 140 pages

Download or read book Hybrid Magnetorheological Damper written by Izyan Iryani Mohd Yazid and published by LAP Lambert Academic Publishing. This book was released on 2013 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: A brief description about designing of Magnetorheological (MR) damper are described. MR dampers are semi-active suspension devices that use MR fluids to produce a controllable damper. The mechanical properties of the suspension can be controlled by adjusting the yield stress of the MR fluid. In this book, the design development for a new mixed mode MR damper with combination of shear and squeeze working modes was carried out. The magnetic field generated by electromagnetic coils in MR damper was analyzed using finite element method. The MR damper was designed and fabricated based on the simulation results. Combination of process parameters of working modes condition and applied current under quasi-static loadings were used in the experiments. Results, the unique damping characteristics of mixed mode MR damper was found where in general, a higher damping force has obtained in mixed mode than single mode. Eventually, the design of MR damper will provide an opportunity to study and consequently understand on how the MR fluids react to such operating condition in order to be realized in the MR damper.

Book Design and Implementation of Energy Generated Magneto rheological Damper for Vehicle Suspension Systems

Download or read book Design and Implementation of Energy Generated Magneto rheological Damper for Vehicle Suspension Systems written by Raju Ahamed and published by . This book was released on 2015 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magneto rheological (MR) fluid based dampers are very promising for semi-active or adaptive suspension control system which is filled with MR fluid. Its huge advantages attract the researchers to use it in more advanced application. MR damper's damping force can be controlled by changing the viscosity of its internal magneto-rheological fluids (MRF). However the requirement of external power source is one of the major concerns. Self-powered MR damper is one of the recent advancement which is accomplished only for double ended MR damper. In this work an energy generated mono tube MR damper has been designed and investigated with power generation which has a huge demand in the vehicle suspension system. This damper combines the advantages of energy harvesting (reusing wasted energy) and MR damping (controllable damping force). This multifunctional integration would bring great benefits such as energy saving, size and weight reduction, lower cost, high reliability, and less maintenance for the MR damper systems. The proposed MR damper model consists permanent magnet and coil combination of energy generation. Two magnetic fields are induced inside this damper. One is in the outer coil of the power generator and another is the piston head coils. A 2-D Axisymmetric model of energy generated MR damper is developed in COMSOL Multiphysics where it is analyzed extensively by finite element method and its hardware model is tested by Universal Testing Machine (UTM). The complete magnetic isolation between these two fields is accomplished here, which can be seen in the finite element analysis and damper characteristic analysis. The energy generation ability of the MR damper model is tested by UTM and oscilloscope combination and the maximum output voltage is measured around 0.8 volts by oscilloscope. Finally, experimental dampers characteristic analysis is performed by using RD-8041-1 MR Damper. These results are compared with the hardware model experimental results, which clearly validate the hardware model damper characteristic.

Book Smart Actuation and Sensing Systems

Download or read book Smart Actuation and Sensing Systems written by Giovanni Berselli and published by BoD – Books on Demand. This book was released on 2012-10-17 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of the present book, which tries to summarize in an edited format and in a fairly comprehensive manner, many of the recent technical research accomplishments in the area of Smart Actuators and Smart Sensors, is to combine researchers and scientists from different fields into a single virtual room. The book hence reflects the multicultural nature of the field and will allow the reader to taste and appreciate different points of view, different engineering methods and different tools that must be jointly considered when designing and realizing smart actuation and sensing systems.

Book Syntheses and Analyses of Semi active Control Algorithms for a Magneto rheological Damper for Vehicle Suspensions

Download or read book Syntheses and Analyses of Semi active Control Algorithms for a Magneto rheological Damper for Vehicle Suspensions written by Enrong Wang and published by . This book was released on 2005 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vehicle suspensions impose conflicting design requirements to satisfy the performance goals related to ride, handling and road holding. Semi-active damping suspensions, with their low cost and low power requirement, have been extensively investigated to achieve better compromises among different performance measures. The magneto-rheological (MR) fluid dampers offer superior potential to achieve rapid variations in the damping force and thus the wide bandwidth. The MR dampers, however, exhibit strong nonlinearities associated with force saturation and hysteresis, which affect the force-tracking performance of the controller in an adverse manner. This dissertation research focuses on characterization and modeling of the hysteretic force-velocity (F-v) characteristics of a MR-fluid damper, and analyses of different semi-active controller syntheses to achieve improved multi-objective vehicle suspension performance. The force-limiting and hysteresis properties of a prototype MR-damper are characterized in the laboratory as functions of applied magnetic field, and response and excitation variables. An asymmetric force generation algorithm is formulated and integrated into the command current circuit to achieve asymmetric force in compression and rebound from the symmetric damper hardware. The measured data are used to identify the low-speed pre-yield, post-yield, force-limiting and hysteretic force-velocity characteristics in both symmetric as well as asymmetric damping modes. A generalized analytical model of the MR-damper is developed using symmetric and asymmetric sigmoid functions. The validity of the proposed model is demonstrated under wide ranges of control current and excitations. A number of control syntheses are formulated to achieve semi-active modulation in drive current of the MR-damper, including four different on-off and "skyhook"--Based hi-lo, and "inverse-model"-based hi-lo and sliding-mode controllers. Continuous modulation (CM) and asymmetric damping force generation (ADFG) algorithms are proposed and integrated within the control policies to minimize switching transients in the symmetric and asymmetric modes.

Book Semi active Magneto Rheological Damper Design for Heavy Vehicles

Download or read book Semi active Magneto Rheological Damper Design for Heavy Vehicles written by Sante Miguel Pelot and published by . This book was released on 2006 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Magneto Rheological Damper Design for Vehicle Suspension Systems

Download or read book Magneto Rheological Damper Design for Vehicle Suspension Systems written by Ali Alghamdi and published by . This book was released on 2013 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optimal Vibration Suppression of Beam type Structures Using Passive and Semi active Tuned Mass Dampers

Download or read book Optimal Vibration Suppression of Beam type Structures Using Passive and Semi active Tuned Mass Dampers written by Fan Yang and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The overall aim of this dissertation is to conduct a comprehensive investigation on the design optimization for passive and semi-active vibration suppression of beam-type structures utilizing the Tuned Mass Damper (TMD) and Semi-Active Mass Damper (SAMD) to prevent discomfort, damage or outright structural failure through dissipating the vibratory energy effectively. The finite element model for general curved beams with variable curvatures under different assumptions (including/excluding the effects of the axial extensibility, shear deformation and rotary inertia) are developed and then utilized to solve the governing differential equations of motion for beam-type structures with the attached TMD system. The developed equations of motion in finite element form are then solved through the random vibration state-space analysis method to effectively find the variance of response under stationary random loading. A hybrid optimization methodology, which combines the global optimization method based on Genetic Algorithm (GA) and the powerful local optimization method based on Sequential Quadratic Programming (SQP), is developed and then utilized to find the optimal design parameters (damping, stiffness and position) of the attached single and multiple TMD systems. Based on the extensive numerical investigation, a design framework for vibration suppression of beam-type structures using TMD technology is then presented. An in-house experimental set-up is designed to demonstrate the effectiveness of the developed optimal design approach for vibration suppression of beam-type structures using TMD technology. Next, the Magneto-Rheological (MR) fluid damper is utilized to design the SAMD system. A new hysteresis model based on the LuGre friction model is developed to analyze the dynamic behavior of large-scale MR-damper (MR-9000 type) accurately and efficiently. The gradient based optimization technique and least square estimation method have been utilized to identify the characteristic parameters of MR-damper. Moreover, based on the developed hysteresis model, an effective inverse MR-damper model has also been proposed, which can be readily used in the design of semi-active vibration suppression devices. The controller for SAMD system using MR-damper is designed based on the proposed inverse MR-damper model and H2 /LQG controller design methodology. The developed SAMD system along with the MR-damper model is then implemented to beam-type structures to suppress the vibration. It has been shown that the designed SAMD system using MR-damper can effectively suppress the vibration in a robust and fail-safe manner.

Book Design and Development of a Magneto rheological Fluid Damper for a High Mobility Multi purpose Wheeled Vehicle  HMMWV

Download or read book Design and Development of a Magneto rheological Fluid Damper for a High Mobility Multi purpose Wheeled Vehicle HMMWV written by Umit Dogruer and published by . This book was released on 2003 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Magnetorheology

    Book Details:
  • Author : Norman Wereley
  • Publisher : Royal Society of Chemistry
  • Release : 2014
  • ISBN : 1849736677
  • Pages : 410 pages

Download or read book Magnetorheology written by Norman Wereley and published by Royal Society of Chemistry. This book was released on 2014 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leading experts provide a timely overview of the key developments in the physics, chemistry and uses of magnetorheological fluids.