EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design Optimization of Advanced PWR SiC SiC Fuel Cladding for Enhanced Tolerance of Loss of Coolant Conditions

Download or read book Design Optimization of Advanced PWR SiC SiC Fuel Cladding for Enhanced Tolerance of Loss of Coolant Conditions written by Pierre Guenoun (S.M.) and published by . This book was released on 2016 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: Limited data has been published (especially on experimental work) on integrated multilayer SiC/SiC prototypical fuel cladding. In this work the mechanical performance of three unique architectures of three-layer silicon carbide (SiC) composite cladding is experimentally investigated under conditions associated with the loss of coolant accident (LOCA), and analytically under various conditions. Specifically, this work investigates SiC cladding mechanical performance after exposure to 1,400°C steam for 48 hours and after thermal shock induced by quenching from 1,200°C into either 100°C or 90°C water. Mechanical performance characteristics are thereafter correlated with sample architecture through void characterization and ceramography. The series with a reduced thickness did not have a pseudo-ductile regime due to overloading of the composite layer. The presence of the axial tow did not yield significant difference in the mechanical behavior most likely because samples were tested in the hoop direction. While as-received and quenched samples behaved similarly (pseudo ductile failure except for one series), non-frangible brittle failure (single-crack failure with no release of debris) was systematically observed after oxidation due to silica buildup in the inner voids of the ceramic matrix composite (CMC) layer. Overall, thermal shock had limited influence on sample mechanical characteristics and oxidation resulted in the formation of silica on the inner wall of the CMC voids leading to the weakening of the monolith matrix and brittle fracture. Stress field in the cladding design is simulated by finite element analysis under service and shutdown conditions at both the core's middle height and at the end of the fuel rod. Stresses in the fuel region are driven by the thermal gradient that creates stresses predominantly from irradiation induced swelling. At the endplug, constraints are mainly mechanical. Stress calculations show high sensitivity to the data scatter and especially swelling and thermal conductivity. No cladding with the design studied here can survive either service or shutdown conditions because of the high irradiation-induced tensile stresses that develop in the hot inner monolith layer. It is shown that this peak tensile stress can be alleviated by adjusting the swelling level of the different layers. The addition of an under-swelling material such as PyC or Si can reduce the monolith tensile stress by 10%. With a composite that swells 10% less than the monolith, the stress is reduced by 20%.

Book Evaluation of Multilayer Silicon Carbide Composite Cladding Under Loss of Coolant Accident Conditions

Download or read book Evaluation of Multilayer Silicon Carbide Composite Cladding Under Loss of Coolant Accident Conditions written by Gregory Welch Daines and published by . This book was released on 2016 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon carbide (SiC) has been proposed as an alternative to zirconium alloys used in current light water reactor (LWR) fuel cladding because it exhibits superior corrosion characteristics, high-temperature strength, and a 1000°C higher melting temperature, all of which are important during a loss of coolant accident (LOCA). To improve the performance of SiC cladding, a multilayered architecture consisting of layers of monolithic SiC (mSiC) and SiC/SiC ceramic matrix composite (CMC) has been proposed. In this work, the mechanical performance of both the tubing and the endplug joint of two-layer SiC cladding is investigated under conditions associated with the LOCA. Specifically, SiC cladding mechanical performance is investigated after exposure to 1,400°C steam and after quenching from 1,200°C into either 100°C or 90°C atmospheric-pressure water. The samples consist of two-layer SiC, with an inner SiC/SiC CMC layer and an outer monolith SiC layer. The relationship between mechanical performance and sample architecture is investigated through ceramography and internal void characterization. The two-layered SiC cladding design offered an as-received failure hoop stress of about 600 MPa, with little strength reduction due to thermal shock, and the tube failure hoop stress remained above 200 MPa after 48 hour high-temperature steam oxidation. The cladding showed pseudo-ductile behavior and failed in a non-frangible manner. The designs investigated for joint strength offered as-received burst strength above 30 MPa, although the impact of thermal shock and oxidation showed possible dependence on architecture. Overall, the cladding showed promising accident-tolerant performance. Because the implementation of SiC is complicated by the need for an open gap and low plenum pressure, thorium-based mixed oxides (MOX) are a promising fuel for SiC cladding because they have higher thermal conductivity and lower fission gas release (FGR). Previous efforts at MIT have modified the FRAPCON code to include thorium MOX fuel. In this work, the fission gas release and thermal conductivity models of FRAPCON-3.4-MIT are validated against published data. The results of this validation indicate a need to update the FGR model, which was accomplished in this work.

Book

    Book Details:
  • Author :
  • Publisher :
  • Release : 1996
  • ISBN :
  • Pages : pages

Download or read book written by and published by . This book was released on 1996 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Systematic Technology Evaluation Program for SiC SiC Composite based Accident Tolerant LWR Fuel Cladding and Core Structures  M2FT 14OR0202244

Download or read book Systematic Technology Evaluation Program for SiC SiC Composite based Accident Tolerant LWR Fuel Cladding and Core Structures M2FT 14OR0202244 written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuels and core structures in the current light water reactors (LWR's) are vulnerable to catastrophic consequences in the event of loss of coolant or active cooling, as unfortunately evidenced by the March 2011 Fukushima Dai-ichi Nuclear Power Plant Accident [1-3]. This vulnerability is attributed primarily to the rapid oxidation kinetics of zirconium alloys in a water vapor environment at very high temperatures [1, 4]. Current LWR's use Zr alloys nearly exclusively as the materials for fuel cladding and core structures. Among the candidate alternative materials for the LWR fuel clads and core structures to enable so-called accident-tolerant fuels (ATF) and accident-tolerant cores (ATC), silicon carbide (SiC) - based materials, in particular continuous SiC fiber-reinforced SiC matrix ceramic composites (SiC/SiC composites or SiC composites), are considered to provide outstanding passive safety features in beyond-design basis severe accident scenarios [3, 5, 6]. The SiC/SiC composites are anticipated to provide additional benefits over the zirconium alloys, including the smaller neutron cross sections, general chemical inertness, ability to withstand higher fuel burn-ups and higher temperatures, exceptional inherent radiation resistance, lack of progressive irradiation growth, and low induced-activation / low decay heat [7]. SiC/SiC composites are finding specialty applications as industrial materials as they mature and their application technologies grow [8]. Moreover, SiC and SiC/SiC composites are among the materials that have most extensively been studied for the effects of irradiation for nuclear applications.

Book Report on Status of Execution of SiC Step Document

Download or read book Report on Status of Execution of SiC Step Document written by and published by . This book was released on 2015 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced fuel claddings made entirely or mainly of silicon carbide (SiC) ceramics and/or composites are considered very attractive elements of the accident-tolerant fuels for the light water reactors. In order to translate the promise of SiC composite materials into a reliable fuel cladding, a coordinated program of component level design and materials development must be carried out with many key feasibility issues addressed a-priori to inform the process. With the primary objective of developing a draft blueprint of a technical program that addresses the critical feasibility issues; assesses design and performance issues related with manufacturing, operating, and off-normal events; and advances the technological readiness levels in essential technology elements, a draft plan for the Systematic Technology Evaluation Program for SiC/SiC Composite Accident-Tolerant LWR Fuel Cladding and Core Structures was developed in the FY-14 Advanced Fuels Campaign of the U.S. Department of Energy's Fuel Cycles Research and Development Program. This document summarizes the status of execution of the technical plan within the activities at the Oak Ridge National Laboratory.

Book Three Mile Island  Chernobyl and Fukushima

Download or read book Three Mile Island Chernobyl and Fukushima written by Thomas Filburn and published by Springer. This book was released on 2016-11-08 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the three most well-known and socially important nuclear accidents. Each of these accidents had significant, yet dramatically different, human and environmental impacts. Unique factors helped shape the overall pattern and scale of each disaster, but a major contributing factor was the different designs used for each reactor. Fukushima was a boiling water reactor (BWR), Chernobyl was a graphite moderated boiling water reactor, and TMI was a pressurized water reactor (PWR). This book traces the history of nuclear power and the development of each reactor type. We examine how GE’s work with a sodium cooled design did not fare well with the US Navy, and led GE to promulgate the BWR design. We explore the Russian atomic bomb program, its use of graphite moderated reactors, and their design modifications to create power production units. We trace the developments in the US that led the US Navy to select the PWR design, and caused the PWR to be used for nearly 2/3 of all US commercial reactors. In sum, the book uses the three major nuclear accidents as a lens to trace the technological history of nuclear energy production and to link these developments with long-term societal and environmental consequences. The book is intended for readers with an interest in nuclear power and nuclear disasters. The detailed and compelling account will appeal to both the expert and the interested lay-person.

Book Assessment of Silicon Carbide Composites for Advanced Salt Cooled Reactors

Download or read book Assessment of Silicon Carbide Composites for Advanced Salt Cooled Reactors written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) composites are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.

Book Prediction of PWR fuel cladding failure strain in a loss of coolant accident

Download or read book Prediction of PWR fuel cladding failure strain in a loss of coolant accident written by J. R. Jones and published by . This book was released on 1986 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Early Implementation of SiC Cladding Fuel Performance Models in BISON

Download or read book Early Implementation of SiC Cladding Fuel Performance Models in BISON written by and published by . This book was released on 2015 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: SiC-based ceramic matrix composites (CMCs) [5-8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

Book Fuel Cladding Temperature Predictions for LOFT LOCE Ll 5   PWR

Download or read book Fuel Cladding Temperature Predictions for LOFT LOCE Ll 5 PWR written by and published by . This book was released on 1978 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cladding temperature predictions were performed for loss-of-fluid test (LOFT) loss-of-coolant experiment (LOCE) L1-5 using the RELAP4 computer code. Two versions of this code were used, RELAP4/MOD5 and RELAP4/MOD6. Measured thermocouple data have been compared to these predictions to determine the relative accuracy of the two RELAP4 computer code versions and their respective blowdown heat transfer correlations selected to describe the fuel cladding surface temperature response during the subcooled and saturated blowdown phase of the LOCE. LOFT LOCE L1-5 simulated a 200% double-ended offset shear break in the cold leg of a four-loop large pressurized water reactor (LPWR). The initial conditions for the LOCE were: zero power with a nuclear core installed, primary coolant (PC) temperature of 541 K, PC pressure of 15.6 MPa, and PC flow of 176 Kg/sec. The PC pumps were running until the end of the blowdown phase of the LOCE, and cold leg emergency core coolant (ECC) injection initiated at 19 seconds.

Book Chemical Compatibility Issues Associated with Use of SiC SiC in Advanced Reactor Concepts

Download or read book Chemical Compatibility Issues Associated with Use of SiC SiC in Advanced Reactor Concepts written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity], a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O2 cannot be ignored, especially for the FHR, in which environment the product, SiO2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.

Book Joining of Ceramics

Download or read book Joining of Ceramics written by M.G. Nicholas and published by Springer. This book was released on 1990 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: An examination of the methods used and the types of bonding that occur in the joining of ceramics to glass or metals, both on surfaces and at joints. The book deals with both the physical and chemical aspects of the bonding.

Book Status of Fast Reactor Research and Technology Development

Download or read book Status of Fast Reactor Research and Technology Development written by International Atomic Energy Agency and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Based on a recommendation from the Technical Working Group on Fast Reactors, this publication is a regular update of previous publications on fast reactor technology. The publication provides comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors. The main issues of discussion are experience in design, construction, operation and decommissioning, various areas of research and development, engineering, safety and national strategies, and public acceptance of fast reactors. In the summary the reader will find national strategies, international initiatives on innovative (i.e. Generation IV) systems and an assessment of public acceptance as related to fast reactors."--Résumé de l'éditeur.

Book Nuclear Fuel Safety Criteria

Download or read book Nuclear Fuel Safety Criteria written by OECD Nuclear Energy Agency and published by OECD Publishing. This book was released on 2001 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents brief descriptions of 20 fuel-related safety criteria along with both the rationale for having such criteria and possible new design and operational issues which could have an effect on them.

Book Structural Materials for Generation IV Nuclear Reactors

Download or read book Structural Materials for Generation IV Nuclear Reactors written by Pascal Yvon and published by Woodhead Publishing. This book was released on 2016-08-27 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area

Book Advanced Nuclear Fuel Technology

Download or read book Advanced Nuclear Fuel Technology written by Jinbiao Xiong and published by Frontiers Media SA. This book was released on 2022-02-25 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: