EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Substrate Integrated Millimeter Wave Antennas for Next Generation Communication and Radar Systems

Download or read book Substrate Integrated Millimeter Wave Antennas for Next Generation Communication and Radar Systems written by Zhi Ning Chen and published by John Wiley & Sons. This book was released on 2021-04-29 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems The first and only comprehensive text on substrate-integrated mmW antenna technology, state-of-the-art antenna design, and emerging wireless applications Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems elaborates the most important topics related to revolutionary millimeter-wave (mmW) technology. Following a clear description of fundamental concepts including substrate-integrated waveguides and loss analysis, the text treats key design methods, prototyping techniques, and experimental setup and testing. The authors also highlight applications of mmW antennas in 5G wireless communication and next-generation radar systems. Readers are prepared to put techniques into practice through practical discussions of how to set up testing for impedance matching, radiation patterns, gain from 24GHz up to 325 GHz, and more. This book will bring readers state-of-the-art designs and recent progress in substrate-integrated mmW antennas for emerging wireless applications. Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems is the first comprehensive text on the topic, allowing readers to quickly master mmW technology. This book: Introduces basic concepts such as metamaterials Huygens's surface, zero-index structures, and pattern synthesis Describes prototyping in the form of fabrication based on printed-circuit-board, low-temperature-co-fired-ceramic and micromachining Explores applications for next-generation radar and imaging systems such as 24-GHz and 77-GHz vehicular radar systems Elaborates design methods including waveguide-based feeding network, three-dimensional feeding structure, dielectric loaded aperture antenna element, and low-sidelobe synthesis The mmW is one of today’s most important emerging technologies. This book provides graduate students, researchers, and engineers with the knowledge they need to deploy mmW systems and develop new antenna designs with low cost, low loss, and low complexity.

Book Analysis and Design of Substrate Integrated Waveguide based Antennas for Millimeter Wave Applications

Download or read book Analysis and Design of Substrate Integrated Waveguide based Antennas for Millimeter Wave Applications written by Shraman Gupta and published by . This book was released on 2016 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, there has been increasing interest and rapid growth in millimeter wave (MMW) antennas and devices for use in diverse applications, services and technologies such as short-range communication, future mm-wave mobile communication for the fifth generation (5G) cellular networks, and sensor and imaging systems. Due to the corresponding smaller wavelength, mm-wave frequencies offer the advantage of physically smaller antennas and circuits as well as the availability of much wider bandwidth compared to microwave frequencies. It is important to design millimeter wave antennas with high gain characteristics due to their high sensitivity towards atmospheric absorption losses. Moreover, millimeter wave antennas can have wide bandwidth and are suitable for applications in large frequency range. In this thesis, planar antennas are designed using substrate integrated waveguide (SIW) technology to have low losses, high quality factor, and low fabrication cost. Firstly, an antipodal fermi linear tapered slot antenna (AFLSTA) with sine corrugations at the side edges at 32.5 GHz is presented, which has a wide impedance bandwidth greater than 30 %, in order to support the high data rate channels. This antenna has a high gain of 12.6 dB and low side lobe levels (better than - 17 dB) in both E and H planes. This antenna is studied and analyzed in array and beamforming configurations to meet requirements of millimeter wave applications. In order to obtain high gain and narrow beamwidth pattern, a 1 × 8 AFLTSA array using SIW power divider network is presented. The design characteristics of the power divider network are presented in this thesis, which help in calculating the performance characteristics of this array structure. This array has an acceptable bandwidth of 14.7 % (30-35 GHz) with high gain of 20.4 dB and 8.35° 3 dB beamwidth. The side lobe levels are also improved using this SIW power divider network and are lower than -25 dB in E-plane and -15 dB in H-plane respectively. This antenna has a radiation efficiency greater than 93% over the whole bandwidth. The second research theme is beamforming of AFLTSA antenna. This beamforming is performed using multi-beam antenna concept in which the beam is rotated with a help of compact beamforming network and excitation from different input ports. The design methodology for 2 × 2 and 4 × 4 subarray beamforming networks is presented along with their current distributions illustrating the beamforming process. These subarrays possess wide impedance bandwidth between 29-36 GHz. Moreover, these subarrays are able to achieve gain between 12-15 dB with narrow beamwidth reaching till 11°. All the results along with the numerical data is presented in this thesis. This antenna is suitable candidate for millimeter wave wireless communications and imaging systems.

Book Substrate Integrated Antennas and Arrays

Download or read book Substrate Integrated Antennas and Arrays written by Yu Jian Cheng and published by CRC Press. This book was released on 2018-09-03 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Substrate Integrated Antennas and Arrays provides a single source for cutting-edge information on substrate integrated circuits (SICs), substrate integrated waveguide (SIW) feeding networks, SIW slot array antennas, SIC traveling-wave antennas, SIW feeding antennas, SIW monopulse antennas, and SIW multibeam antennas. Inspired by the author’s extensive research, this comprehensive book: Describes a revolutionary SIC-based antenna technique with the potential to replace existing antenna technologies Examines theoretical and experimental results connected to electrical and mechanical performance Explains how to overcome difficulties in meeting bandwidth, gain, and efficiency specifications Substrate Integrated Antennas and Arrays offers valuable insight into the state of the art of SIC and SIW antenna technologies, presenting research useful to the development of wireless communication base station antennas, portable microwave point-to-point systems, collision avoidance radars, conformal antennas, and satellite antennas.

Book Novel Millimetre Wave Antennas for MIMO and 5G Applications

Download or read book Novel Millimetre Wave Antennas for MIMO and 5G Applications written by Shiban Kishen Koul and published by Springer Nature. This book was released on 2021-11-30 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents state-of-the-art millimetre wave antennas for next generation 5G communications. The propagation losses associated with the millimetre waves and the signal blockage due to the objects present between transmitter and receiver require novel antenna topologies to address these issues. Various aspects of antenna design related to millimetre wave 5G communication including 28-GHz channel characteristics, mmWave antenna requirements, antenna design strategies for 28 GHz, MIMO/multibeam antennas, and mmWave lens antennas are highlighted. Apart from the general antenna requirements and study related to the 28 GHz frequency band, various new metamaterial-based antennas employing uniaxial or biaxial anisotropic media that enhance the antenna radiation performance are covered in detail. In addition, various new antenna systems such as wide-scan antenna arrays, dual-polarized antennas, and dual-beam/multibeam antennas are covered in this book. The book concludes with the glimpses of the millimetre wave lens antennas and the design of very thin planar metamaterial lens for 5G massive MIMO applications.

Book Advanced Millimeter wave Technologies

Download or read book Advanced Millimeter wave Technologies written by Duixian Liu and published by John Wiley & Sons. This book was released on 2009-04-06 with total page 866 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains one of the hottest topics in wireless and electronic devices community, namely the wireless communication at mmWave frequencies, especially at the 60 GHz ISM band. It provides the reader with knowledge and techniques for mmWave antenna design, evaluation, antenna and chip packaging. Addresses practical engineering issues such as RF material evaluation and selection, antenna and packaging requirements, manufacturing tolerances, antenna and system interconnections, and antenna One of the first books to discuss the emerging research and application areas, particularly chip packages with integrated antennas, wafer scale mmWave phased arrays and imaging Contains a good number of case studies to aid understanding Provides the antenna and packaging technologies for the latest and emerging applications with the emphases on antenna integrations for practical applications such as wireless USB, wireless video, phase array, automobile collision avoidance radar, and imaging

Book Millimeter Wave Antennas for 5G Mobile Terminals and Base Stations

Download or read book Millimeter Wave Antennas for 5G Mobile Terminals and Base Stations written by Shiban Kishen Koul and published by CRC Press. This book was released on 2020-11-24 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses antenna designs for handheld devices as well as base stations. The book serves as a reference and a handy guide for graduate students and PhD students involved in the field of millimeter wave antenna design. It also gives insights to designers and practicing engineers who are actively engaged in design of antennas for future 5G devices. It offers an in-depth study, performance analysis and extensive characterization of novel antennas for 5G applications. The reader will learn about basic design methodology and techniques to develop antennas for 5G applications including concepts of path loss compensation, co-design of commercial 4G antennas with millimeter wave 5G antennas and antennas used in phase array and pattern diversity modules. Practical examples included in the book will help readers to build high performance antennas for 5G subsystems/systems using low cost technology. Key Features Provides simple design methodology of different antennas for handheld devices as well as base stations for 5G applications. Concept of path loss compensation introduced. Co-design of commercial 4G antennas with millimetre wave 5G antennas presented. Comparison of phased array versus pattern diversity modules discussed in detail. Fabrication and Measurement challenges at mmWaves and Research Avenues in antenna designs for 5G and beyond presented. Shiban Kishen Koul is an emeritus professor at the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi. He served as the chairman of Astra Microwave Products Limited, Hyderabad from 2009-2018. He is a Life Fellow of the Institution of Electrical and Electronics Engineering (IEEE), USA, a Fellow of the Indian National Academy of Engineering (INAE), and a Fellow of the Institution of Electronics and Telecommunication Engineers (IETE). Karthikeya G S worked as an assistant professor in Visvesvaraya technological university from 2013 to 2016 and completed his PhD from the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi in Dec.2019. He is a member of IEEE-Antenna Propagation Society and Antenna Test and Measurement society.

Book Millimeter Wave Antennas  Configurations and Applications

Download or read book Millimeter Wave Antennas Configurations and Applications written by Jaco du Preez and published by Springer. This book was released on 2016-06-20 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This book offers readers essential guidance, helping them to gain a thorough understanding based on the most recent research findings and serving as a sound basis for informed decision-making.

Book Microwave and Millimeter wave Antenna Design for 5G Smartphone Applications

Download or read book Microwave and Millimeter wave Antenna Design for 5G Smartphone Applications written by Wonbin Hong and published by John Wiley & Sons. This book was released on 2023-01-05 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: In-depth and practical coverage of design considerations for 5G antennas In Microwave and Millimeter-wave Antenna Design for 5G Smartphone Applications, two distinguished researchers deliver a holistic, multidisciplinary approach to antenna design methodologies. The book covers approaches ranging from sub-6GHz microwave to the millimeter-wave spectrum, explaining how microwave and millimeter-wave 5G antennas coexist and function, both independently and collaboratively. The book offers coverage of key considerations for designing millimeter-wave 5G antennas within space-constrained mobile devices, as well as practical concerns, like cost, fabrication yield, and heat dissipation. Readers will also find explorations of the likely future directions of 5G antenna evolution, as well as: A thorough introduction to basic concepts in 5G FR1 Band mobile antenna design, including discussions of antenna placement, element design, and topologies Comprehensive explorations of antenna feeding mechanisms and impedance matching, including chassis considerations and effects Practical discussions of frequency tunable millimeter-wave 5G antenna-in-package Fulsome treatments of compact millimeter-wave 5G antenna solutions and millimeter-wave antenna-on-display technologies for 5G mobile devices Perfect for antenna, microwave, communications, and radio-frequency engineers, Microwave and Millimeter-wave Antenna Design for 5G Smartphone Applications will also benefit graduate students, policymakers, regulators, and researchers with an interest in communications and antennas.

Book Antenna Engineering Handbook

Download or read book Antenna Engineering Handbook written by John Volakis and published by McGraw Hill Professional. This book was released on 2018-11-05 with total page 1424 pages. Available in PDF, EPUB and Kindle. Book excerpt: The gold-standard reference on the design and application of classic and modern antennas—fully updated to reflect the latest advances and technologiesThis new edition of the “bible of antenna engineering” has been updated to provide start-to-finish coverage of the latest innovations in antenna design and application. You will find in-depth discussion of antennas used in modern communication systems, mobile and personal wireless technologies, satellites, radar deployments, flexible electronics, and other emerging technologies, including 5G, terahertz, and wearable electronics. Antenna Engineering Handbook, Fifth Edition, is bolstered by real-world examples, hundreds of illustrations, and an emphasis on the practical aspects of antennas.Featuring 60 chapters and contributions from more than 80 renowned experts, this acclaimed resource is edited by one of the world’s leading antenna authorities. This edition features all of the classic antenna types, plus new and emerging designs, with 13 all-new chapters and important updates to nearly all chapters from past editions.Antenna Engineering Handbook, Fifth Edition, clearly explains cutting-edge applications in WLANs, automotive systems, PDAs, and handheld devices, making it an indispensable companion for today’s antenna practitioners and developers.Coverage includes:•Antenna basics and classic antennas•Design approaches for antennas and arrays•Wideband and multiband antennas•Antennas for mobile devices and PDAs, automotive applications, and aircraft•Base station and smart antennas•Beamforming and 5G antennas•Millimeter-wave and terahertz antennas•Flexible, wearable, thin film, origami, dielectric, and on-chip antennas•MIMO antennas and phased arrays•Direction-finding and GPS antennas•Active antennas•Low-profile wideband antennas•Nanoantennas•Reflectors and other satellite and radio-telescope antennas•Low-frequency, HF, VHF, UHF, ECM, and ESM antennas•Impedance-matching techniques and material characteristics•Metastructured and frequency selective surfaces•Propagation and guided structures•Computational techniques and toolsets•Indoor and outdoor measurements

Book Compact Omnidirectional Millimeter Wave Antenna Array Using Substrate Integrated Waveguide Technique and Efficient Modeling Approach

Download or read book Compact Omnidirectional Millimeter Wave Antenna Array Using Substrate Integrated Waveguide Technique and Efficient Modeling Approach written by Yuanzhi Liu and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, an innovative approach for effective modeling of substrate integrated waveguide (SIW) devices is firstly proposed. Next, a novel substrate integrated waveguide power splitter is proposed to feed antenna array elements in series. This feed network inherently provides uniform output power to eight quadrupole antennas. More importantly, it led to a compact configuration since the feed network can be integrated inside the elements without increasing the overall array size. Its design procedure is also presented. Then, a series feed network was used to feed a novel compact omnidirectional antenna array. Targeting the 5G 26 GHz mm-wave frequency band, simulated results showed that the proposed array exhibits a broad impedance bandwidth of 4.15 GHz and a high gain of 13.6 dBi, which agree well with measured results. Its attractive features indicate that the proposed antenna array is well suitable for millimeter-wave wireless communication systems.

Book Optical and Wireless Convergence for 5G Networks

Download or read book Optical and Wireless Convergence for 5G Networks written by Abdelgader M. Abdalla and published by John Wiley & Sons. This book was released on 2019-10-07 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mobile market has experienced unprecedented growth over the last few decades. Consumer trends have shifted towards mobile internet services supported by 3G and 4G networks worldwide. Inherent to existing networks are problems such as lack of spectrum, high energy consumption, and inter-cell interference. These limitations have led to the emergence of 5G technology. It is clear that any 5G system will integrate optical communications, which is already a mainstay of wide area networks. Using an optical core to route 5G data raises significant questions of how wireless and optical can coexist in synergy to provide smooth, end-to-end communication pathways. Optical and Wireless Convergence for 5G Networks explores new emerging technologies, concepts, and approaches for seamlessly integrating optical-wireless for 5G and beyond. Considering both fronthaul and backhaul perspectives, this timely book provides insights on managing an ecosystem of mixed and multiple access network communications focused on optical-wireless convergence. Topics include Fiber–Wireless (FiWi), Hybrid Fiber-Wireless (HFW), Visible Light Communication (VLC), 5G optical sensing technologies, approaches to real-time IoT applications, Tactile Internet, Fog Computing (FC), Network Functions Virtualization (NFV), Software-Defined Networking (SDN), and many others. This book aims to provide an inclusive survey of 5G optical-wireless requirements, architecture developments, and technological solutions.

Book Antenna in Package Technology and Applications

Download or read book Antenna in Package Technology and Applications written by Duixian Liu and published by John Wiley & Sons. This book was released on 2020-03-03 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to antenna design, manufacturing processes, antenna integration, and packaging Antenna-in-Package Technology and Applications contains an introduction to the history of AiP technology. It explores antennas and packages, thermal analysis and design, as well as measurement setups and methods for AiP technology. The authors—well-known experts on the topic—explain why microstrip patch antennas are the most popular and describe the myriad constraints of packaging, such as electrical performance, thermo-mechanical reliability, compactness, manufacturability, and cost. The book includes information on how the choice of interconnects is governed by JEDEC for automatic assembly and describes low-temperature co-fired ceramic, high-density interconnects, fan-out wafer level packaging–based AiP, and 3D-printing-based AiP. The book includes a detailed discussion of the surface laminar circuit–based AiP designs for large-scale mm-wave phased arrays for 94-GHz imagers and 28-GHz 5G New Radios. Additionally, the book includes information on 3D AiP for sensor nodes, near-field wireless power transfer, and IoT applications. This important book: • Includes a brief history of antenna-in-package technology • Describes package structures widely used in AiP, such as ball grid array (BGA) and quad flat no-leads (QFN) • Explores the concepts, materials and processes, designs, and verifications with special consideration for excellent electrical, mechanical, and thermal performance Written for students in electrical engineering, professors, researchers, and RF engineers, Antenna-in-Package Technology and Applications offers a guide to material selection for antennas and packages, antenna design with manufacturing processes and packaging constraints, antenna integration, and packaging.

Book Substrate Integrated Waveguide Antenna Systems

Download or read book Substrate Integrated Waveguide Antenna Systems written by Sara Salem Hesari and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to high demand for planar structures with low loss, a considerable amount of research has been done to the design of substrate integrated waveguide (SIW) components in the mm-wave and microwave range. SIW has many advantages in comparison to conventional waveguides and microstrip lines, such as compact and planar structure, ease of fabrication, low radiation loss, high power handling ability and low cost which makes it a very promising technology for current and future systems operating in K-band and above. Therefore, all the work presented in this dissertation focuses on SIW technology. Five di erent antenna systems are proposed to verify the advantages of using SIW technology. First, a novel K-band end- re SIW circularly polarized (CP) antenna system on a single layer printed-circuit board is proposed. A high gain SIW H-plane horn and a Vivaldi antenna are developed to produce two orthogonal polarizations in the plane of the substrate. CP antennas have become very popular because of their unique characteristics and their applications in satellites, radars and wireless communications. Second, a K-band front-end system for tracking applications is presented. The circuit comprises an antenna array of two Vivaldi antennas, a frequency-selective power combiner, and two frequency-selective SIW crossovers, which eliminate the need for subsequent ltering. The integration of monopulse systems in planar, printed circuit SIW technology combined with the added bene ts of ltering functions is of great importance to the antennas and propagation community. Third, a phased array antenna system consisting of 24 radiating element is designed as feed system for reflector antennas in radio astronomy applications. A Ku-band antipodal dipole antenna with wide bandwidth, low cross-polarization and wide beamwidth is suggested as the radiating element. Forth, four di erent right-angled power dividers including in-phase and out-of-phase dividers as feed systems for antenna arrays are introduced. TE10 - to - TEq0 mode transducers are used for obtaining two, three, and four output dividers with phase control ability at K- and Ka-band. This feature is practical, for instance, when designing tracking systems since they are employed to obtain controllable phase distributions over the output ports. Fifth, a Ku-band beam steering antenna system which is applicable to use for wireless communications, radar systems, and also 5G applications is proposed. This antenna system uses variable reflection-type phase shifters which electrically steer the beam over a 50-degree scan range. Therefore, the SIW technology's reliability and also promising behavior in the microwave frequency range is proven for di erent applications.

Book High Gain Broadband Mm Wave Antenna Arrays for Short range Wireless Communication Systems

Download or read book High Gain Broadband Mm Wave Antenna Arrays for Short range Wireless Communication Systems written by ISSA MOHAMED SASI HOWASH MOHAMED and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, the ever-increasing demand for fifth-generation (5G) wireless applications has turned millimeter-wave (mm-wave) multi-beam array antenna into quite a promising research direction. Besides offering a remarkable bandwidth for high-speed wireless connectivity, the short wavelengths (1 to 10 mm) of mm-wave signals makes the size of the antenna array with beamforming network (BFN) compatible with a transceiver front-end. The high losses associated with mm-wave wireless links and systems considered the foremost challenge and may restrict the wireless communication range. Therefore, a wideband substrate integrated waveguide (SIW)-based antenna with high gain and beam scanning capabilities would be a solution for these challenges, as it can increase the coverage area of mm-wave wireless systems and mitigate the multipath interference to achieve a high signal to noise (S/N) ratio, and thereby fulfill the link budget requirements. This thesis focuses on the analysis and design of single- and multi-beam mm-wave antenna arrays based on SIW technology to fulfill the growing demand for wideband high-gain planar antenna arrays with beam steering capability at V-band. A tapered slot antenna (TSA) and cavity-backed patch antenna are used as the main radiators in these systems to achieve high-gain and high efficiency over a wide range of operating frequencies. Accordingly, numerous design challenges and BFN-related issues have been addressed in this work. Firstly, an antipodal Fermi tapered slot antenna (AFTSA) with sine-shaped corrugations is proposed at V-band. The antenna provides a flat measured gain of 20 dB with a return loss better than 22 dB. In addition, A broadband double-layer SIW-to-slotline transition is proposed to feed a planar linearly tapered slot antenna (PLTSA) covering the band 46-72 GHz. This new feeding technique, which addresses the bandwidth limits of regular microstrip-to-slotline transitions and avoids the bond wires and air bridges, is utilized to feed a 1x4 SIW-based PLTSA array. Secondly, a new cavity-backed aperture-coupled patch antenna with overlapped 1-dB gain and impedance bandwidth of 43.4 % (56-87 GHz) for |S11|

Book Design and Optimization of Dielectric Resonator Antenna Arrays Based on Substrate Integrated Waveguide Technology for Millimeter wave Applications

Download or read book Design and Optimization of Dielectric Resonator Antenna Arrays Based on Substrate Integrated Waveguide Technology for Millimeter wave Applications written by Mona Sabry Abdalla Abousheishaa and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the lower frequency bands heavily crowded, the millimeter wave (MMW) frequency band has attracted a lot of attention, offering a wide range of applications. It also introduces new challenges to the research community. Antennas and MMW circuits with compact size, low cost, high efficiency, and low loss are much needed to meet the new requirements of these applications. This research focuses on the design and optimization of dielectric resonator antenna (DRA) arrays based on substrate integrated waveguide (SIW) technology, which has been proven to be promising for MMW applications. The objectives include both the development of highly efficient computer aided design and optimization techniques, and the development of new designs based on the SIW-DRA technology. Toward these objectives, an efficient and accurate circuit model is developed first. A previously reported structure of DRA array is investigated based on two different slot orientations. The total mutual coupling between antennas is firstly extracted and modeled as a two port S-parameters. Two different methods are used to extract the total mutual coupling due to the difference of the slot configurations. Next, a new and fully adjustable model for the mutual coupling is developed for DRA array, resulting in a flexible circuit model allowing the design parameters to be varied. A comparison with full wave simulation and measurement results proves that the circuit model can be used as an efficient design and optimization tool. The model is further verified through a new design of SIW-series fed DRA parasitic array, in which an additional parasitic DRA is added on both sides of each active element to improve the gain. The antennas are fed using longitudinal slots on SIW. Due to the configuration of the antenna elements, there is strong mutual coupling between the antenna elements. The good agreement between the electromagnetic (EM) simulated and circuit model results for this design further proves the efficiency of the model.Next, a new design of an eight-element SIW middle fed series rectangular DRA array with 45° linear polarization is developed. The implicit space mapping (ISM) technique is applied for the optimization of the complex structure. The new circuit model plays an important role in the optimization method serving as the coarse/surrogate mode, and a full wave solver is used as the fine model. Parameters in the surrogate model are divided into pre-assigned parameters and design parameters. In each iteration, the preassigned parameters are extracted so that the fine model and surrogate model outputs match. The design parameters are then re-optimized and fed to the fine model. As demonstrated with this DRA array design, the optimization approach combining the developed circuit model with ISM technique is highly efficient. Only three iterations are needed to reach an optimized solution for such a complex structure. The optimized design has been fabricated using a low cost Printed Circuit Board (PCB)-based technology for validation of both performance of the design and modeling techniques. The comparison between the simulated and the measured results shows very good agreement.