EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design  Fabrication  and Characterization of an Ultra low Cost Inductively coupled Plasma Chemical Vapor Deposition Tool for Micro  and Nanofabrication

Download or read book Design Fabrication and Characterization of an Ultra low Cost Inductively coupled Plasma Chemical Vapor Deposition Tool for Micro and Nanofabrication written by Parker Andrew Gould and published by . This book was released on 2019 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: The high cost of semiconductor fabrication equipment has traditionally represented a large barrier to entry for groups seeking to develop or commercialize novel micro- and nanoscale devices. Much of the cost barrier stems from the large size of the substrates processed in this equipment, and the associated complexity of maintaining consistent operation across the full substrate area. By scaling the substrate size down from the 150-300 mm diameter sizes commonly seen in today's production environments, the capital cost and physical footprint of tools for micro- and nanoscale fabrication can be dramatically decreased, while still retaining a similarly high level of performance. In this work, an ultra-low cost inductively-coupled plasma chemical vapor deposition (ICPCVD) system for processing substrates up to 50.8 mm (2") in diameter is presented. The ICPCVD system is built within a modular vacuum tool architecture that allows sections of the full tool to be easily and inexpensively replaced to adapt to new processing conditions or provide additional functionality. The system uses a non-pyrophoric mixture of silane (1.5% in helium) and low substrate temperatures ( : 150*C) to deposit uniform silicon-based films with a high quality comparable to films deposited in research-grade commercial tools. Using response surface methods, the performance of the ICP-CVD system has been characterized for both silicon dioxide and silicon nitride films, and repeatable control of the deposited film properties, including deposition rate, index of refraction, film stress, and density, has been demonstrated.

Book Design  Fabrication  and Characterization of a Compact Magnetron Sputtering System for Micro nano Fabrication

Download or read book Design Fabrication and Characterization of a Compact Magnetron Sputtering System for Micro nano Fabrication written by Mitchell David Hsing and published by . This book was released on 2019 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general rule of thumb for new semiconductor fabrication facilities (fabs) is that revenues from the first year of production must match the capital cost of building the fab itself. With modem fabs routinely exceeding $1 billion to build, this rule serves as a significant barrier to entry for groups seeking to commercialize new semiconductor devices aimed at smaller market segments which require a dedicated process. To address this gap in the industry, we are developing a I" Fab line of dedicated tools which processes small 1-2" wafers and feature the same functionality as large-scale commercial micro/nano fabrication tools, but with a significant reduction in cost and footprint. To enable the envisioned 1" Fab a reality, this thesis describes the design, development and testing of a sputtering physical vapor deposition tool, a critical tool in the 1" Fab line of tools. The tool is designed to be compatible with the 1" Fab's four-module, modular tool infrastructure, and also to allow for sharing of its peripheral equipment with other components of the 1" Fab. The modularity feature allows for multiple tools be created using an interchangeable tool platform while the shared backend equipment feature allows for a sizable cost-saving benefit, as the cost of peripheral equipment for any given tool is up to 70% of the tool's total cost. Our developed sputtering tool features the successful implementation of these two design components with a final build cost of around $25k - roughly one-seventh of the cost of a commercial tool. The sputtering tool's performance was fully characterized for both reactive and nonreactive sputtering processes. The tool's non-reactive metal depositions were examined in detail using a design of experiment response surface model. Deposition rates of up to 5.5 A/s were observed while maintaining a uniformity of ~3% across the wafer. Utilizing a direct sputter technique, this represents a deposition rate that is 4x faster than state of the practice tools while also attaining the same level of uniformity. Alongside the development of metal depositions processes, the reactive sputtering capabilities of the tool were also demonstrated through successful process development for the deposition of Aluminum Nitride (AlN). Three unique operation regions, for AlN reactive sputtering were discovered with the highest quality AlN depositions observed in transition region. Stable and repeatable depositions were achieved via the development of two control methods - voltage control and flow control. Using this optimized process, highly c-axis aligned films with columnar growth structures were observed indicating the production of high quality AlN films. This successfully developed tool alongside its optimized processes is well suited for integration into the 1" Fab, further enabling the realization of our envisioned low-cost micro/nano fabrication platform.

Book Ionized Physical Vapor Deposition

Download or read book Ionized Physical Vapor Deposition written by and published by Academic Press. This book was released on 1999-10-14 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides the first comprehensive look at a pivotal new technology in integrated circuit fabrication. For some time researchers have sought alternate processes for interconnecting the millions of transistors on each chip because conventional physical vapor deposition can no longer meet the specifications of today's complex integrated circuits. Out of this research, ionized physical vapor deposition has emerged as a premier technology for the deposition of thin metal films that form the dense interconnect wiring on state-of-the-art microprocessors and memory chips. For the first time, the most recent developments in thin film deposition using ionized physical vapor deposition (I-PVD) are presented in a single coherent source. Readers will find detailed descriptions of relevant plasma source technology, specific deposition systems, and process recipes. The tools and processes covered include DC hollow cathode magnetrons, RF inductively coupled plasmas, and microwave plasmas that are used for depositing technologically important materials such as copper, tantalum, titanium, TiN, and aluminum. In addition, this volume describes the important physical processes that occur in I-PVD in a simple and concise way. The physical descriptions are followed by experimentally-verified numerical models that provide in-depth insight into the design and operation I-PVD tools. Practicing process engineers, research and development scientists, and students will find that this book's integration of tool design, process development, and fundamental physical models make it an indispensable reference. Key Features: The first comprehensive volume on ionized physical vapor deposition Combines tool design, process development, and fundamental physical understanding to form a complete picture of I-PVD Emphasizes practical applications in the area of IC fabrication and interconnect technology Serves as a guide to select the most appropriate technology for any deposition application *This single source saves time and effort by including comprehensive information at one's finger tips *The integration of tool design, process development, and fundamental physics allows the reader to quickly understand all of the issues important to I-PVD *The numerous practical applications assist the working engineer to select and refine thin film processes

Book Design  Fabrication  and Characterization of a Low cost Flexural Bearing Based 3D Printing Tool Head

Download or read book Design Fabrication and Characterization of a Low cost Flexural Bearing Based 3D Printing Tool Head written by Aaron Eduardo Ramirez and published by . This book was released on 2010 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis discusses the design, characterization and optimization of a low-cost additive rapid-prototyping tool head for a technology known as Fused Filament Fabrication for use in an educational curriculum. Building a 3D printer represents an excellent educational opportunity as it requires knowledge in electronics, mechanics, and thermal-fluids engineering; this particular design also includes a flexural bearing, introducing students to a new and important class of machine element. Polymer flow through the extruder is modeled as pipe flow with pressure drops using Bernoulli's equation with viscous losses; the model predicts that the pressure required to extrude is proportional to 1/d4', where d is the nozzle diameter. Three different extruder designs are considered; a piston-based design, an auger-based design, and a pinch-wheel design. The pinch wheel design best meets the functional requirements after comparing the designs based on factors such as complexity and controllability. Flexural bearings are selected to provide a preload against the polymer filament; HDPE was chosen to be the flexure material after considering factors such as water-jet machinability and yield stress to elastic modulus ratio. Thermal imaging shows that the temperature profile along the heater barrel is not uniform, with the largest variation being 80±2.8°C in large part due to errors in heater wire distribution during assembly. An exponential relationship is observed between the force required to extrude versus the temperature of the heater barrel with the force required to extrude dropping to between 1 and 2N in the range of 200 to 240°C. This data suggests trade-offs between maintaining a reasonable extruding pressure and maintaining good build resolution and speed. A discussion of the low cost rapid prototyping cycle follows, as well as instructions for assembly and use of the extruder. The paper ends with several suggestions to improve extruder performance and a list of ideas for bringing the extruder costs down.

Book Inductively Coupled Plasma Reactive Ion Etching  ICP RIE   Nanofabrication Tool for High Resolution Pattern Transfer

Download or read book Inductively Coupled Plasma Reactive Ion Etching ICP RIE Nanofabrication Tool for High Resolution Pattern Transfer written by and published by . This book was released on 2001 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: High resolution lithography and directional ion etching are increasingly important for the fabrication of nanostructures. As part of this equipment proposal, a reactive ion etching system was purchased from Oxford Instruments for $305,000. The Army Research Office provided $274,000, and Caltech cost share amounted to $31,500. This instrument was connected and etching conditions were optimized for the fabrication of nanostructures in silicon, silicon dioxide and gallium arsenide. In this final progress report, we will present some examples of functional devices which have been defined by using this very capable ion etching system.

Book Luminous Chemical Vapor Deposition and Interface Engineering

Download or read book Luminous Chemical Vapor Deposition and Interface Engineering written by Hirotsugu Yasuda and published by CRC Press. This book was released on 2004-11-30 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing in-depth coverage of the technologies and various approaches, Luminous Chemical Vapor Deposition and Interface Engineering showcases the development and utilization of LCVD procedures in industrial scale applications. It offers a wide range of examples, case studies, and recommendations for clear understanding of this innovative science.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design  Fabrication and Characterization of Micro nano Electroporation Devices for Drug gene Delivery

Download or read book Design Fabrication and Characterization of Micro nano Electroporation Devices for Drug gene Delivery written by HyunChul Jung and published by . This book was released on 2011 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: In current traditional electroporation methods, each cell experience different local process conditions due to non uniform electric fields, and high voltage. This leads to a degree of cell death and untransfected cells in every process. We designed and developed a novel micro/nanoscaled devices to apply relatively low and uniform electric field for well-controlled in vitro gene delivery and improved cell survival rate and overall transfection efficiency.

Book Labs on Chip

    Book Details:
  • Author : Eugenio Iannone
  • Publisher : CRC Press
  • Release : 2018-09-03
  • ISBN : 1466560738
  • Pages : 1178 pages

Download or read book Labs on Chip written by Eugenio Iannone and published by CRC Press. This book was released on 2018-09-03 with total page 1178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Labs on Chip: Principles, Design and Technology provides a complete reference for the complex field of labs on chip in biotechnology. Merging three main areas— fluid dynamics, monolithic micro- and nanotechnology, and out-of-equilibrium biochemistry—this text integrates coverage of technology issues with strong theoretical explanations of design techniques. Analyzing each subject from basic principles to relevant applications, this book: Describes the biochemical elements required to work on labs on chip Discusses fabrication, microfluidic, and electronic and optical detection techniques Addresses planar technologies, polymer microfabrication, and process scalability to huge volumes Presents a global view of current lab-on-chip research and development Devotes an entire chapter to labs on chip for genetics Summarizing in one source the different technical competencies required, Labs on Chip: Principles, Design and Technology offers valuable guidance for the lab-on-chip design decision-making process, while exploring essential elements of labs on chip useful both to the professional who wants to approach a new field and to the specialist who wants to gain a broader perspective.

Book Carbon Nanowalls

Download or read book Carbon Nanowalls written by Mineo Hiramatsu and published by Springer Science & Business Media. This book was released on 2010-07-23 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Representing the first text to cover this exciting new area of research, this book will describe synthesis techniques of CNWs, their characterization and various expected applications using CNWs. Carbon-nanowalls (CNWs) can be described as two-dimensional graphite nanostructures with edges comprised of stacks of plane graphene sheets standing almost vertically on the substrate. These sheets form a wall structure with a high aspect ratio. The thickness of CNWs ranges from a few nm to a few tens of nm. The large surface area and sharp edges of CNWs may prove useful for a number of applications such as electrochemical devices, field electron emitters, storage materials for hydrogen gas, catalyst support. In particular, vertically standing CNWs with a high surface-to-volume ratio, serve as an ideal material for catalyst support for fuel cells and in gas storage materials.

Book Electrical   Electronics Abstracts

Download or read book Electrical Electronics Abstracts written by and published by . This book was released on 1997 with total page 2304 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Atomic Layer Deposition for Semiconductors

Download or read book Atomic Layer Deposition for Semiconductors written by Cheol Seong Hwang and published by Springer Science & Business Media. This book was released on 2013-10-18 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.

Book Midsize Facilities

Download or read book Midsize Facilities written by National Research Council and published by National Academies Press. This book was released on 2006-04-06 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the instruments now used for materials research are too complex and expensive for individual investigators to own, operate, and maintain them. Consequently, they have become increasingly consolidated into multi-user, small to midsized research facilities, located at many sites around the country. The proliferation of these facilities, however, has drawn calls for a careful assessment of best principles for their operation. With support from the Department of Energy and the National Science Foundation, the NRC carried out a study to characterize and discuss ways to optimize investments in materials research facility infrastructure with attention to midsize facilities. This report provides an assessment of the nature and importance of mid-sized facilities, their capabilities, challenges they face, current investment, and optimizing their effectiveness.

Book Microfabrication and Nanomanufacturing

Download or read book Microfabrication and Nanomanufacturing written by Mark J. Jackson and published by CRC Press. This book was released on 2005-11-10 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology, seen as the next leap forward in the industrial revolution, requires that manufacturers develop processes that revolutionize the way small products are made. Microfabrication and Nanomanufacturing focuses on the technology of fabrication and manufacturing of engineering materials at these levels. The book provides an overview of techniques used in the semiconductor industry. It also discusses scaling and manufacturing processes operating at the nanoscale for non-semiconductor applications; the construction of nanoscale components using established lithographic techniques; bulk and surface micromachining techniques used for etching, machining, and molding procedures; and manufacturing techniques such as injection molding and hot embossing. This authoritative compilation describes non-traditional micro and nanoscale processing that uses a newly developed technique called pulsed water jet machining as well as the efficient removal of materials using optical energy. Additional chapters focus on the development of nanoscale processes for producing products other than semiconductors; the use of abrasive particles embedded in porous tools; and the deposition and application of nanocrystalline diamond. Economic factors are also presented and concern the promotion and commercialization of micro and nanoscale products and how demand will eventually drive the market.

Book Handbook of Laser Micro  and Nano Engineering

Download or read book Handbook of Laser Micro and Nano Engineering written by KOJI SUGIOKA. and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.