Download or read book Metasurfaces Physics and Applications written by Sergey I. Bozhevolnyi and published by MDPI. This book was released on 2018-11-16 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Metasurfaces: Physics and Applications" that was published in Applied Sciences
Download or read book Neuromorphic Photonic Devices and Applications written by Min Gu and published by Elsevier. This book was released on 2023-12-01 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuromorphic Photonic Devices and Applications synthesizes the most critical advances in photonic neuromorphic models, photonic material platforms and accelerators for neuromorphic computing. The book discusses fields and applications that can leverage these new platforms. A brief review of the historical development of the field is followed by a discussion of the emerging 2D photonic materials platforms and recent work in implementing neuromorphic models and 3D neuromorphic systems. The application of artificial intelligence (AI), such as neuromorphic models to inverse design neuromorphic materials and devices and predict performance challenges is discussed throughout. Finally, a comprehensive overview of the applications of neuromorphic photonic technologies and the challenges, opportunities and future prospects is discussed, making the book suitable for researchers and practitioners in academia and R&D in the multidisciplinary field of photonics. - Includes overview of primary scientific concepts for the research topic of neuromorphic photonics such as neurons as computational units, artificial intelligence, machine learning and neuromorphic models - Reviews the latest advances in photonic materials, device platforms and enabling technology drivers of neuromorphic photonics - Discusses potential applications in computing and optical communications
Download or read book Nonlinear Meta Optics written by Costantino De Angelis and published by CRC Press. This book was released on 2020-05-20 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses fabrication as well as characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects. The visible range as well as near and far infrared spectral region will be considered with a view to different envisaged applications. The book covers the current key challenges of the research in the area, including: exploiting new material platforms, fully extending the device operation into the nonlinear regime, adding re-configurability to the envisaged devices and proposing new modeling tools to help in conceiving new functionalities. • Explores several topics in the field of semiconductor nonlinear nanophotonics, including fabrication, characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects • Describes the research challenges in the field of optical metasurfaces in the nonlinear regime • Reviews the use and achievements of all-dielectric nanoantennas for strengthening the nonlinear optical response • Describes both theoretical and experimental aspects of photonic devices based on semiconductor optical nanoantennas and metasurfaces • Gathers contributions from several leading groups in this research field to provide a thorough and complete overview of the current state of the art in the field of semiconductor nonlinear nanophotonics Costantino De Angelis has been full professor of electromagnetic fields at the University of Brescia since 1998. He is an OSA Fellow and has been responsible for several university research contracts in the last 20 years within Europe, the United States, and Italy. His technical interests are in optical antennas and nanophotonics. He is the author of over 150 peer-reviewed scientific journal articles. Giuseppe Leo has been a full professor in physics at Paris Diderot University since 2004, and in charge of the nonlinear devices group of MPQ Laboratory since 2006. His research areas include nonlinear optics, micro- and nano-photonics, and optoelectronics, with a focus on AlGaAs platform. He has coordinated several research programs and coauthored 100 peer-reviewed journal articles, 200 conference papers, 10 book chapters and also has four patents. Dragomir Neshev is a professor in physics and the leader of the experimental photonics group in the Nonlinear Physics Centre at Australian National University (ANU). His activities span over several branches of optics, including nonlinear periodic structures, singular optics, plasmonics, and photonic metamaterials. He has coauthored 200 publications in international peer-reviewed scientific journals.
Download or read book Metamaterials by Design written by Andrea Alù and published by Elsevier. This book was released on 2024-04-04 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metamaterials-by-Design: Theory, Technologies, and Vision is devoted to a comprehensive review of the latest advancements and current trends in the field of system-level-oriented metamaterial design methods, technologies, and future perspectives. Starting from the theoretical and methodological motivations of this research to macro-scale performance-driven design of volumetric and planar metamaterials, the book introduces advanced task-oriented modeling approaches, including specific reference to their multi-scale/ multi-physics customization in recent metamaterial science and engineering. In the introduction of these concepts, particular attention is paid to the illustration of the physical mechanisms and phenomena at the basis of the field manipulation capabilities enabled by metamaterials. Contributions from industry and academic perspectives on active and passive metamaterial-enhanced devices for communications and sensing are included. The final part of the volume is aimed at providing a perspective regarding the current trends, future research and application tracks in system-performance-driven metamaterial design methodologies and technologies, included potential applications in future reconfigurable and cognitive materials. - Includes comprehensive review of the research developments, methodologies, and opportunities in the field of metamaterials-by-design - Discusses new and emerging applications of metamaterials in microwave and terahertz spectrum, photonics, and optics scenarios - Reviews performance-driven metamaterial design methodologies and technologies in communications and sensing
Download or read book Metasurface Holography written by Zi-Lan Deng and published by Springer Nature. This book was released on 2022-05-31 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: The merging of metasurface and holography brings about unprecedented opportunities for versatile manipulation of light in terms of both far-field wavefront and near-field profile. In this book, a brief evolving history from surface plasmon polariton holography to metamaterial holography and finally to metasurface holography is introduced at first. Basic physical mechanisms that govern the phase modulation rules behind metasurface holography design are discussed later. Next, extended functionalities such as arbitrary polarization holography, vectorial holography, full-color holography, and hybrid holography achieved in the metasurface platform are presented. Surface wave and metagrating holography that bridges the on-chip surface wave and free-space wave is also introduced. In the end, we envisage practical applications of high-fidelity 3D holographic display, high-secure encryption, and high capacity digital encoding and also indicate remaining challenges based on metasurface holography.
Download or read book Optical Vortices Generation and Detection written by Junjie Yu and published by Frontiers Media SA. This book was released on 2022-11-10 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Lab on Fiber Technology written by Andrea Cusano and published by Springer. This book was released on 2014-07-29 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the “lab-on-fiber” technology. Inspired by the well-established "lab on-a-chip" concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications. Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate description of the main developments and achievements in the lab-on-fiber technology roadmap, also highlighting the new perspectives and challenges to be faced. This book is essential for scientists interested in the cutting-edge fiber optic technology, but also for graduate students.
Download or read book Frontiers in Optics and Photonics written by Federico Capasso and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-06-08 with total page 783 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a cutting-edge research overview on the latest developments in the field of Optics and Photonics. All chapters are authored by the pioneers in their field and will cover the developments in Quantum Photonics, Optical properties of 2D Materials, Optical Sensors, Organic Opto-electronics, Nanophotonics, Metamaterials, Plasmonics, Quantum Cascade lasers, LEDs, Biophotonics and biomedical photonics and spectroscopy.
Download or read book Springer Handbook of Glass written by J. David Musgraves and published by Springer. This book was released on 2019-08-14 with total page 1590 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides comprehensive treatment of the current state of glass science from the leading experts in the field. Opening with an enlightening contribution on the history of glass, the volume is then divided into eight parts. The first part covers fundamental properties, from the current understanding of the thermodynamics of the amorphous state, kinetics, and linear and nonlinear optical properties through colors, photosensitivity, and chemical durability. The second part provides dedicated chapters on each individual glass type, covering traditional systems like silicates and other oxide systems, as well as novel hybrid amorphous materials and spin glasses. The third part features detailed descriptions of modern characterization techniques for understanding this complex state of matter. The fourth part covers modeling, from first-principles calculations through molecular dynamics simulations, and statistical modeling. The fifth part presents a range of laboratory and industrial glass processing methods. The remaining parts cover a wide and representative range of applications areas from optics and photonics through environment, energy, architecture, and sensing. Written by the leading international experts in the field, the Springer Handbook of Glass represents an invaluable resource for graduate students through academic and industry researchers working in photonics, optoelectronics, materials science, energy, architecture, and more.
Download or read book Dielectric Metamaterials written by Igal Brener and published by Woodhead Publishing. This book was released on 2019-11-13 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dielectric Metamaterials: Fundamentals, Designs, and Applications links fundamental Mie scattering theory with the latest dielectric metamaterial research, providing a valuable reference for new and experienced researchers in the field. The book begins with a historical, evolving overview of Mie scattering theory. Next, the authors describe how to apply Mie theory to analytically solve the scattering of electromagnetic waves by subwavelength particles. Later chapters focus on Mie resonator-based metamaterials, starting with microwaves where particles are much smaller than the free space wavelengths. In addition, several chapters focus on wave-front engineering using dielectric metasurfaces and the nonlinear optical effects, spontaneous emission manipulation, active devices, and 3D effective media using dielectric metamaterials.
Download or read book Diffractive Optics written by Donald C. O'Shea and published by SPIE Press. This book was released on 2004 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs). Although there are not long derivations or detailed methods for specific engineering calculations, the reader should be familiar and comfortable with basic computational techniques. This text is not a 'cookbook' for producing DOEs, but it should provide readers with sufficient information to assess whether this technology would benefit their work, and to understand the requirements for using the concepts and techniques presented by the authors.
Download or read book Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning written by Sawyer D. Campbell and published by John Wiley & Sons. This book was released on 2023-09-26 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authoritative reference on the state of the art in the field with additional coverage of important foundational concepts Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning presents cutting-edge research advances in the rapidly growing areas in optical and RF electromagnetic device modeling, simulation, and inverse-design. The text provides a comprehensive treatment of the field on subjects ranging from fundamental theoretical principles and new technological developments to state-of-the-art device design, as well as examples encompassing a wide range of related sub-areas. The content of the book covers all-dielectric and metallodielectric optical metasurface deep learning-accelerated inverse-design, deep neural networks for inverse scattering, applications of deep learning for advanced antenna design, and other related topics. To aid in reader comprehension, each chapter contains 10-15 illustrations, including prototype photos, line graphs, and electric field plots. Contributed to by leading research groups in the field, sample topics covered in Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning include: Optical and photonic design, including generative machine learning for photonic design and inverse design of electromagnetic systems RF and antenna design, including artificial neural networks for parametric electromagnetic modeling and optimization and analysis of uniform and non-uniform antenna arrays Inverse scattering, target classification, and other applications, including deep learning for high contrast inverse scattering of electrically large structures Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning is a must-have resource on the topic for university faculty, graduate students, and engineers within the fields of electromagnetics, wireless communications, antenna/RF design, and photonics, as well as researchers at large defense contractors and government laboratories.
Download or read book Machine Learning for Future Fiber Optic Communication Systems written by Alan Pak Tao Lau and published by Academic Press. This book was released on 2022-02-10 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning for Future Fiber-Optic Communication Systems provides a comprehensive and in-depth treatment of machine learning concepts and techniques applied to key areas within optical communications and networking, reflecting the state-of-the-art research and industrial practices. The book gives knowledge and insights into the role machine learning-based mechanisms will soon play in the future realization of intelligent optical network infrastructures that can manage and monitor themselves, diagnose and resolve problems, and provide intelligent and efficient services to the end users. With up-to-date coverage and extensive treatment of various important topics related to machine learning for fiber-optic communication systems, this book is an invaluable reference for photonics researchers and engineers. It is also a very suitable text for graduate students interested in ML-based signal processing and networking. - Discusses the reasons behind the recent popularity of machine learning (ML) concepts in modern optical communication networks and the why/where/how ML can play a unique role - Presents fundamental ML techniques like artificial neural networks (ANNs), support vector machines (SVMs), K-means clustering, expectation-maximization (EM) algorithm, principal component analysis (PCA), independent component analysis (ICA), reinforcement learning, and more - Covers advanced deep learning (DL) methods such as deep neural networks (DNNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs) - - Individual chapters focus on ML applications in key areas of optical communications and networking
Download or read book Chirality Magnetism and Magnetoelectricity written by Eugene Kamenetskii and published by Springer Nature. This book was released on 2021-03-27 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses theoretical and experimental advances in metamaterial structures, which are of fundamental importance to many applications in microwave and optical-wave physics and materials science. Metamaterial structures exhibit time-reversal and space-inversion symmetry breaking due to the effects of magnetism and chirality. The book addresses the characteristic properties of various symmetry breaking processes by studying field-matter interaction with use of conventional electromagnetic waves and novel types of engineered fields: twisted-photon fields, toroidal fields, and magnetoelectric fields. In a system with a combined effect of simultaneous breaking of space and time inversion symmetries, one observes the magnetochiral effect. Another similar phenomenon featuring space-time inversion symmetries is related to use of magnetoelectric materials. Cross-coupling of the electric and magnetic components in these material structures, leading to the appearance of new magnetic modes with an electric excitation channel – electromagnons and skyrmions – has resulted in a wealth of strong optical effects such as directional dichroism, magnetochiral dichroism, and rotatory power of the fields. This book contains multifaceted contributions from international leading experts and covers the essential aspects of symmetry-breaking effects, including theory, modeling and design, proven and potential applications in practical devices, fabrication, characterization and measurement. It is ideally suited as an introduction and basic reference work for researchers and graduate students entering this field.
Download or read book Metamaterials with Negative Parameters written by Ricardo Marqués and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first general textbook to offer a complete overview of metamaterial theory and its microwave applications Metamaterials with Negative Parameters represents the only unified treatment of metamaterials available in one convenient book. Devoted mainly to metamaterials that can be characterized by a negative effective permittivity and/or permeability, the book includes a wide overview of the most important topics, scientific fundamentals, and technical applications of metamaterials. Chapter coverage includes: the electrodynamics of left-handed media, synthesis of bulk metamaterials, synthesis of metamaterials in planar technology, microwave applications of metamaterial concepts, and advanced and related topics, including SRR- and CSRR-based admittance surfaces, magneto- and electro-inductive waves, and sub-diffraction imaging devices. A list of problems and references is included at the end of each chapter, and a bibliography offers a complete, up-to-daterepresentation of the current state of the art in metamaterials. Geared toward students and professionals alike, Metamaterials with Negative Parameters is an ideal textbook for postgraduate courses and also serves as a valuable introductory reference for scientists and RF/microwave engineers.
Download or read book Twisted Photons written by Juan P. Torres and published by John Wiley & Sons. This book was released on 2011-03-31 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with applications in several areas of science and technology that make use of light which carries orbital angular momentum. In most practical scenarios, the angular momentum can be decomposed into two independent contributions: the spin angular momentum and the orbital angular momentum. The orbital contribution affords a fundamentally new degree of freedom, with fascinating and wide-spread applications. Unlike spin angular momentum, which is associated with the polarization of light, the orbital angular momentum arises as a consequence of the spatial distribution of the intensity and phase of an optical field, even down to the single photon limit. Researchers have begun to appreciate its implications for our understanding of the ways in which light and matter can interact, and its practical potential in different areas of science and technology.
Download or read book Advances in Electromagnetics of Complex Media and Metamaterials written by Saïd Zouhdi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: The NATO Advanced Research Workshop Bianisotropics 2002 was held in th Marrakesh, Morocco, during 8-11 May 2002. This was the 9 International Conference on Electromagnetics of Complex Media, belonging to a series of meetings where the focus is on electromagnetics of chiral, bianisotropic, and other materials that may respond to electric and magnetic field excitations in special manner. The first of these meetings was held in Espoo, Finland (1993), and the following venues were Gomel, Belarus (1993), Perigueux, France (1994), State College, Pennsylvania, USA (1995), the rivers and channels between St. Petersburg and Moscow in Russia (1996), Glasgow, Scotland (1997), Brunswick, Germany (1998), and Lisbon, Portugal (2000). The present book contains full articles of several of the presentations that were given in the Marrakesh conference. In Bianisotropics 2002, 8 re view lectures, 14 invited lectures and 68 contributed talks and posters were presented. Of these presentations, after a double review process, 28 contributions have achieved their final form on the pages to follow. From the contributions ofthe meeting, also another publication is being planned: a Special Issue of the journal Electromagnetics will be devoted to complex materials. Guest editors for this issue are Keith W. Whites and Said Zouhdi. The chairmen of Bianisotropics 2002conference were Said Zouhdi (Pierre et Marie Curie University - Paris) and Mohamed Arsalane (Cadi Ayyad University - Marrakesh), who were assisted by Scientists from Moroccan Universities and the International Bianisotropics Conference Committee.