EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design and Analysis of Large Lithium Ion Battery Systems

Download or read book Design and Analysis of Large Lithium Ion Battery Systems written by Shriram Santhanagopalan and published by Artech House. This book was released on 2014-12-01 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new resource provides you with an introduction to battery design and test considerations for large-scale automotive, aerospace, and grid applications. It details the logistics of designing a professional, large, Lithium-ion battery pack, primarily for the automotive industry, but also for non-automotive applications. Topics such as thermal management for such high-energy and high-power units are covered extensively, including detailed design examples. Every aspect of battery design and analysis is presented from a hands-on perspective. The authors work extensively with engineers in the field and this book is a direct response to frequently-received queries. With the authors’ unique expertise in areas such as battery thermal evaluation and design, physics-based modeling, and life and reliability assessment and prediction, this book is sure to provide you with essential, practical information on understanding, designing, and building large format Lithium-ion battery management systems.

Book Advances in Lithium Ion Batteries

Download or read book Advances in Lithium Ion Batteries written by Walter van Schalkwijk and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the decade since the introduction of the first commercial lithium-ion battery research and development on virtually every aspect of the chemistry and engineering of these systems has proceeded at unprecedented levels. This book is a snapshot of the state-of-the-art and where the work is going in the near future. The book is intended not only for researchers, but also for engineers and users of lithium-ion batteries which are found in virtually every type of portable electronic product.

Book Battery Management Systems

    Book Details:
  • Author : H.J. Bergveld
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 9401708436
  • Pages : 311 pages

Download or read book Battery Management Systems written by H.J. Bergveld and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Battery Management Systems - Design by Modelling describes the design of Battery Management Systems (BMS) with the aid of simulation methods. The basic tasks of BMS are to ensure optimum use of the energy stored in the battery (pack) that powers a portable device and to prevent damage inflicted on the battery (pack). This becomes increasingly important due to the larger power consumption associated with added features to portable devices on the one hand and the demand for longer run times on the other hand. In addition to explaining the general principles of BMS tasks such as charging algorithms and State-of-Charge (SoC) indication methods, the book also covers real-life examples of BMS functionality of practical portable devices such as shavers and cellular phones. Simulations offer the advantage over measurements that less time is needed to gain knowledge of a battery's behaviour in interaction with other parts in a portable device under a wide variety of conditions. This knowledge can be used to improve the design of a BMS, even before a prototype of the portable device has been built. The battery is the central part of a BMS and good simulation models that can be used to improve the BMS design were previously unavailable. Therefore, a large part of the book is devoted to the construction of simulation models for rechargeable batteries. With the aid of several illustrations it is shown that design improvements can indeed be realized with the presented battery models. Examples include an improved charging algorithm that was elaborated in simulations and verified in practice and a new SoC indication system that was developed showing promising results. The contents of Battery Management Systems - Design by Modelling is based on years of research performed at the Philips Research Laboratories. The combination of basic and detailed descriptions of battery behaviour both in chemical and electrical terms makes this book truly multidisciplinary. It can therefore be read both by people with an (electro)chemical and an electrical engineering background.

Book Rechargeable Ion Batteries

Download or read book Rechargeable Ion Batteries written by Katerina E. Aifantis and published by John Wiley & Sons. This book was released on 2023-01-30 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rechargeable Ion Batteries Highly informative and comprehensive resource providing knowledge on underlying concepts, materials, ongoing developments and the many applications of ion-based batteries Rechargeable Ion Batteries explores the concepts and the design of rechargeable ion batteries, including their materials chemistries, applications, stability, and novel developments. Focus is given on state-of-the-art Li-based batteries used for portable electronics and electric vehicles, while other emerging ion-battery technologies are also introduced. The text addresses innovative approaches by reviewing nanostructured anodes and cathodes that pave new ways for enhancing the electrochemical performance. The first three chapters are dedicated to the general concepts of electrochemical cells, enabling readers to understand all necessary concepts for batteries from a single book. The following chapter covers the exciting applications of lithium-ion and sodium-ion batteries, while the subsequent chapters on Li-battery components include new types of anodes, cathodes, and electrolytes that have been developed recently, complemented by an overview of designing mechanically stable ion-battery systems. The last three chapters summarize recent progress in lithium-sulfur, sodium-ion, magnesium-ion and zinc and emerging ion-battery technologies. In Rechargeable Ion Batteries, readers can expect to find specific information on: Electrochemical cells, primary batteries, secondary batteries, recycling of batteries, applications of lithium and sodium batteries Next-generation cathodes, anodes and electrolytes for secondary lithium-ion batteries, which allow for improved performance and safety Multiphysics modeling for predicting design criteria for next generation ion-insertion electrodes Developments in lithium-sulfur batteries, sodium-ion batteries, and future ion-battery technologies Rechargeable Ion Batteries provides informative and comprehensive coverage of the subject to interested researchers, academics, and professionals in various fields, including materials science, electrochemistry, physical chemistry, mechanics, engineering, recycling and industry including the battery manufacturers and supply chain ancillaries, automotive, aerospace, and marine sectors, energy storage installers and environmental stakeholders. Readers can easily acquire a base of knowledge on the subject while understanding future developments in the field.

Book Design and Simulation of Lithium Rechargeable Batteries

Download or read book Design and Simulation of Lithium Rechargeable Batteries written by Christopher Marc Doyle and published by . This book was released on 1995 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiscale Modelling and Simulation

Download or read book Multiscale Modelling and Simulation written by Sabine Attinger and published by Springer Science & Business Media. This book was released on 2004-07-12 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: In August 2003, ETHZ Computational Laboratory (CoLab), together with the Swiss Center for Scientific Computing in Manno and the Università della Svizzera Italiana (USI), organized the Summer School in "Multiscale Modelling and Simulation" in Lugano, Switzerland. This summer school brought together experts in different disciplines to exchange ideas on how to link methodologies on different scales. Relevant examples of practical interest include: structural analysis of materials, flow through porous media, turbulent transport in high Reynolds number flows, large-scale molecular dynamic simulations, ab-initio physics and chemistry, and a multitude of others. Though multiple scale models are not new, the topic has recently taken on a new sense of urgency. A number of hybrid approaches are now created in which ideas coming from distinct disciplines or modelling approaches are unified to produce new and computationally efficient techniques.

Book Modeling transport properties and electrochemical performance of hierarchically structured lithium ion battery cathodes using resistor networks and mathematical half cell models

Download or read book Modeling transport properties and electrochemical performance of hierarchically structured lithium ion battery cathodes using resistor networks and mathematical half cell models written by Birkholz, Oleg and published by KIT Scientific Publishing. This book was released on 2022-10-05 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hierarchically structured active materials in electrodes of lithium-ion cells are promising candidates for increasing gravimetric energy density and improving rate capability of the system. To investigate the influence of cathode structures on the performance of the whole cell, efficient tools for calculating effective transport properties of granular systems are developed and their influence on the electrochemical performance is investigated in specially adapted cell models.

Book Battery System Modeling

Download or read book Battery System Modeling written by Shunli Wang and published by Elsevier. This book was released on 2021-06-23 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Battery System Modeling provides advances on the modeling of lithium-ion batteries. Offering step-by-step explanations, the book systematically guides the reader through the modeling of state of charge estimation, energy prediction, power evaluation, health estimation, and active control strategies. Using applications alongside practical case studies, each chapter shows the reader how to use the modeling tools provided. Moreover, the chemistry and characteristics are described in detail, with algorithms provided in every chapter. Providing a technical reference on the design and application of Li-ion battery management systems, this book is an ideal reference for researchers involved in batteries and energy storage. Moreover, the step-by-step guidance and comprehensive introduction to the topic makes it accessible to audiences of all levels, from experienced engineers to graduates. Explains how to model battery systems, including equivalent, electrical circuit and electrochemical nernst modeling Includes comprehensive coverage of battery state estimation methods, including state of charge estimation, energy prediction, power evaluation and health estimation Provides a dedicated chapter on active control strategies

Book Fundamentals and Applications of Lithium ion Batteries in Electric Drive Vehicles

Download or read book Fundamentals and Applications of Lithium ion Batteries in Electric Drive Vehicles written by Jiuchun Jiang and published by John Wiley & Sons. This book was released on 2015-02-18 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: A theoretical and technical guide to the electric vehicle lithium-ion battery management system Covers the timely topic of battery management systems for lithium batteries. After introducing the problem and basic background theory, it discusses battery modeling and state estimation. In addition to theoretical modeling it also contains practical information on charging and discharging control technology, cell equalisation and application to electric vehicles, and a discussion of the key technologies and research methods of the lithium-ion power battery management system. The author systematically expounds the theory knowledge included in the lithium-ion battery management systems and its practical application in electric vehicles, describing the theoretical connotation and practical application of the battery management systems. Selected graphics in the book are directly derived from the real vehicle tests. Through comparative analysis of the different system structures and different graphic symbols, related concepts are clear and the understanding of the battery management systems is enhanced. Contents include: key technologies and the difficulty point of vehicle power battery management system; lithium-ion battery performance modeling and simulation; the estimation theory and methods of the lithium-ion battery state of charge, state of energy, state of health and peak power; lithium-ion battery charge and discharge control technology; consistent evaluation and equalization techniques of the battery pack; battery management system design and application in electric vehicles. A theoretical and technical guide to the electric vehicle lithium-ion battery management system Using simulation technology, schematic diagrams and case studies, the basic concepts are described clearly and offer detailed analysis of battery charge and discharge control principles Equips the reader with the understanding and concept of the power battery, providing a clear cognition of the application and management of lithium ion batteries in electric vehicles Arms audiences with lots of case studies Essential reading for Researchers and professionals working in energy technologies, utility planners and system engineers.

Book Mathematical Modeling of Lithium Batteries

Download or read book Mathematical Modeling of Lithium Batteries written by Krishnan S. Hariharan and published by Springer. This book was released on 2017-12-28 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is unique to be the only one completely dedicated for battery modeling for all components of battery management system (BMS) applications. The contents of this book compliment the multitude of research publications in this domain by providing coherent fundamentals. An explosive market of Li ion batteries has led to aggressive demand for mathematical models for battery management systems (BMS). Researchers from multi-various backgrounds contribute from their respective background, leading to a lateral growth. Risk of this runaway situation is that researchers tend to use an existing method or algorithm without in depth knowledge of the cohesive fundamentals—often misinterpreting the outcome. It is worthy to note that the guiding principles are similar and the lack of clarity impedes a significant advancement. A repeat or even a synopsis of all the applications of battery modeling albeit redundant, would hence be a mammoth task, and cannot be done in a single offering. The authors believe that a pivotal contribution can be made by explaining the fundamentals in a coherent manner. Such an offering would enable researchers from multiple domains appreciate the bedrock principles and forward the frontier. Battery is an electrochemical system, and any level of understanding cannot ellipse this premise. The common thread that needs to run across—from detailed electrochemical models to algorithms used for real time estimation on a microchip—is that it be physics based. Build on this theme, this book has three parts. Each part starts with developing a framework—often invoking basic principles of thermodynamics or transport phenomena—and ends with certain verified real time applications. The first part deals with electrochemical modeling and the second with model order reduction. Objective of a BMS is estimation of state and health, and the third part is dedicated for that. Rules for state observers are derived from a generic Bayesian framework, and health estimation is pursued using machine learning (ML) tools. A distinct component of this book is thorough derivations of the learning rules for the novel ML algorithms. Given the large-scale application of ML in various domains, this segment can be relevant to researchers outside BMS domain as well. The authors hope this offering would satisfy a practicing engineer with a basic perspective, and a budding researcher with essential tools on a comprehensive understanding of BMS models.

Book Lithium Ion Batteries

Download or read book Lithium Ion Batteries written by Xianxia Yuan and published by CRC Press. This book was released on 2011-12-14 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a group of top scientists and engineers in academic and industrial R&D, Lithium-Ion Batteries: Advanced Materials and Technologies gives a clear picture of the current status of these highly efficient batteries. Leading international specialists from universities, government laboratories, and the lithium-ion battery industry share their knowledge and insights on recent advances in the fundamental theories, experimental methods, and research achievements of lithium-ion battery technology. Along with coverage of state-of-the-art manufacturing processes, the book focuses on the technical progress and challenges of cathode materials, anode materials, electrolytes, and separators. It also presents numerical modeling and theoretical calculations, discusses the design of safe and powerful lithium-ion batteries, and describes approaches for enhancing the performance of next-generation lithium-ion battery technology. Due to their high energy density, high efficiency, superior rate capability, and long cycling life, lithium-ion batteries provide a solution to the increasing demands for both stationary and mobile power. With comprehensive and up-to-date information on lithium-ion battery principles, experimental research, numerical modeling, industrial manufacturing, and future prospects, this volume will help you not only select existing materials and technologies but also develop new ones to improve battery performance.

Book Advances in Lithium Ion Batteries

Download or read book Advances in Lithium Ion Batteries written by Walter van Schalkwijk and published by Springer Science & Business Media. This book was released on 2002-06-30 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the decade since the introduction of the first commercial lithium-ion battery research and development on virtually every aspect of the chemistry and engineering of these systems has proceeded at unprecedented levels. This book is a snapshot of the state-of-the-art and where the work is going in the near future. The book is intended not only for researchers, but also for engineers and users of lithium-ion batteries which are found in virtually every type of portable electronic product.

Book Proceedings of the Symposium on Advances in Lead Acid Batteries

Download or read book Proceedings of the Symposium on Advances in Lead Acid Batteries written by Kathryn R. Bullock and published by . This book was released on 1984 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lithium Ion Batteries

    Book Details:
  • Author : Yoshiaki Kato
  • Publisher : CRC Press
  • Release : 2019-04-05
  • ISBN : 0429535023
  • Pages : 194 pages

Download or read book Lithium Ion Batteries written by Yoshiaki Kato and published by CRC Press. This book was released on 2019-04-05 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-performance secondary batteries, also called rechargeable or storage batteries, are a key component of electric automobiles, power storage for renewable energies, load levellers of electric power lines, base stations for mobile phones, and emergency power supply in hospitals, in addition to having application in energy security and realization of a low-carbon and resilient society. A detailed understanding of the physics and chemistry that occur in secondary batteries is required for developing next-generation secondary batteries with improved performance. Among various types of secondary batteries, lithium-ion batteries are most widely used because of their high energy density, small memory effect, and low self-discharge rate. This book introduces lithium-ion batteries, with an emphasis on their overview, roadmaps, and simulations. It also provides extensive descriptions of ion beam analysis and prospects for in situ diagnostics of lithium-ion batteries. The chapters are written by specialists in cutting-edge research on lithium-ion batteries and related subjects. The book will be a great reference for advanced undergraduate- and graduate-level students, researchers, and engineers in electrochemistry, nanotechnology, and diagnostic methods and instruments.

Book Lifetime Prediction and Simulation Models of Different Energy Storage Devices

Download or read book Lifetime Prediction and Simulation Models of Different Energy Storage Devices written by Julia Kowal and published by MDPI. This book was released on 2020-11-13 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy storage is one of the most important enablers for the transformation to a sustainable energy supply with greater mobility. For vehicles, but also for many stationary applications, the batteries used for energy storage are very flexible but also have a rather limited lifetime compared to other storage principles. This Special Issue is a collection of articles that collectively address the following questions: What are the factors influencing the aging of different energy storage technologies? How can we extend the lifetime of storage systems? How can the aging of an energy storage be detected and predicted? When do we have to exchange the storage device? The articles cover lithium-ion batteries, supercaps, and flywheels.

Book Thermal Management for Batteries

Download or read book Thermal Management for Batteries written by Hafiz Muhammad Ali and published by Elsevier. This book was released on 2024-03-15 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Management of Batteries presents a comprehensive examination of the various conventional and emerging technologies used for thermal management of batteries and electronics. With an emphasis on advanced nanofluids, the book provides step-by-step guidance on advanced techniques at the component and system level for both active and passive technologyStarting with an overview of the fundamentals, each chapter quickly builds into a comprehensive treatment of up-to-date technologies. The first part of the book discusses advanced battery technologies, while the second part addresses the design and performance optimization of battery thermal management systems. Power density and fast charging mechanisms of batteries are considered, as are role of thermal management systems on performance enhancement. The book discusses the design selection of various thermal management systems, parameters selection for different configurations, the operating conditions for different battery types, the setups used for experimentation and instrumentation, and the operation of thermal management systems. Advanced techniques such as heat pipes, phase change materials, nanofluids, novel heat sinks, and two phase flow loops are examined in detail.Presenting the fundamentals through to the latest developments alongside step-by-step guidance, mathematical models, schematic diagrams, and experimental data, Thermal Management of Batteries is an invaluable and comprehensive reference for graduates, researchers, and practicing engineers working in the field of battery thermal management, and offers valuable solutions to key thermal management problems that will be of interest to anyone working on energy and thermal heat systems. Critically examines the components of batteries systems and their thermal energy generation Analyzes system scale integration of battery components with optimization and better design impact Explores the modeling aspects and applications of nanofluid technology and PCMs, as well as the utilization of machine learning techniques Provides step-by-step guidance on techniques in each chapter that are supported by mathematical models, schematic diagrams, and experimental data

Book Rechargeable Lithium Ion Batteries

Download or read book Rechargeable Lithium Ion Batteries written by Thandavarayan Maiyalagan and published by CRC Press. This book was released on 2020-12-17 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium-ion batteries are the most promising among the secondary battery technologies, for providing high energy and high power required for hybrid electric vehicles (HEV) and electric vehicles (EV). Lithium-ion batteries consist of conventional graphite or lithium titanate as anode and lithium transition metal-oxides as cathode. A lithium salt dissolved in an aprotic solvent such as ethylene carbonate and diethylene carbonate is used as electrolyte. This rechargeable battery operates based on the principle of electrochemical lithium insertion/re-insertion or intercalation/de-intercalation during charging/discharging of the battery. It is essential that both electrodes have layered structure which should accept and release the lithium-ion. In advanced lithium-ion battery technologies, other than layered anodes are also considered. High cell voltage, high capacity as well as energy density, high Columbic efficiency, long cycle life, and convenient to fabricate any size or shape of the battery, are the vital features of this battery technology. Lithium-ion batteries are already being used widely in most of the consumer electronics such as mobile phones, laptops, PDAs etc. and are in early stages of application in HEV and EV, which will have far and wide implications and benefits to society. The book contains ten chapters, each focusing on a specific topic pertaining to the application of lithium-ion batteries in Electric Vehicles. Basic principles, electrode materials, electrolytes, high voltage cathodes, recycling spent Li-ion batteries and battery charge controller are addressed. This book is unique among the countable books focusing on the lithium-ion battery technologies for vehicular applications. It provides fundamentals and practical knowledge on the lithium-ion battery for vehicular application. Students, scholars, academicians, and battery and automobile industries will find this volume useful.