EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design and Implications of a Robotic Prosthetic Leg with Low impedance Actuation

Download or read book Design and Implications of a Robotic Prosthetic Leg with Low impedance Actuation written by Toby Brent Elery and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in the field of powered prostheses have produced several devices that implement a wide variety of actuation schemes, each presenting specific benefits and limitations to prosthetic design and acceptance of robotic prostheses. The work of this dissertation encompasses research focused on the design and implications of an actuation scheme new to robotic prosthetic leg design; low-impedance actuation. Although this style of actuation has shown promise in legged robots, it has potential benefits specifically relating to powered prosthetic legs as well. Such benefits include free-swinging knee motion, compliance with the ground, negligible unmodeled actuator dynamics, less acoustic noise, and power regeneration. To investigate these potential benefits a custom transfemoral (knee-ankle) robotic prosthetic leg with high-torque, low-impedance actuators was created. Preliminary benchtop testing established that both joints can be backdriven by small torques (~1-3 Nm), confirming the small reflected inertia and low impedance. The reduced joint-level impedance was achieved while maintaining the ability to produce very large torque (~180 Nm). Impedance control tests prove that the intrinsic impedance and unmodeled dynamics of the actuator are sufficiently small to control joint impedance without torque feedback or lengthy tuning trials. The negligible effect of the actuator's unmodeled dynamics is further demonstrated through the direct implementation of biological impedances in amputee walking experiments. The regenerative abilities, low friction, and small reflected inertia of the presented actuators also offer practical benefits through reduced power consumption and acoustic noise compared to state-of-art powered legs. Although these benefits are mainly related to the physical device, this dissertation also extends the investigation into potential benefits to the wearer. Additional walking experiments were conducted with three amputee subjects to study how the powered prosthetic leg with low-impedance actuators affected gait compensations, specifically at the residual hip. A walking controller was implemented on the powered prosthesis to exploit the low-impedance actuators' power density during push-off, impedance control abilities in stance, and trajectory tracking abilities to ensure toe-clearance during swing. Results show that when large push-off power is provided, less work is demanded from the residual hip to progress the limb forward. Moreover, all subjects displayed increased step length and propulsive impulses for the prosthetic side, compared to their passive prostheses. These results reduce demand on the hip to accelerate the body forward and display the ability to improve gait symmetries. Hip circumduction improved for subjects who had previously exhibited this compensation on their passive prosthesis. The improvements made to these compensations lead to reduced residual hip power and work, which can reduce fatigue and overuse injuries.

Book Active Above Knee Prosthesis

Download or read book Active Above Knee Prosthesis written by Zlata Jelacic and published by Academic Press. This book was released on 2020-06-16 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Active Above-Knee Prosthesis: A Guide to a Smart Prosthetic Leg presents original research and development results, providing a firsthand overview of idea generation and prototype production. The book gives insights into the problem of stair ascent for people with above-knee amputation and offers a solution in the form of a physical prototype of an active above-knee prosthesis with an actuated ankle. The book's authors have developed and tested a physical prototype of an active above-knee prosthesis, giving anyone who is researching and designing prosthetic devices firsthand knowledge on how to build on, and continue with, work that has already been done. - Presents state-of-the-art technology in powered prosthetics - Helps readers evaluate design options and create new developments - Provides guidance on the evolution of advanced prosthetic design

Book Ankle Impedance and Ankle Angles During Step Turn and Straight Walk

Download or read book Ankle Impedance and Ankle Angles During Step Turn and Straight Walk written by Evandro M. Ficanha and published by . This book was released on 2013 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: A prototype ankle-foot prosthesis capable of controlling both DP and IE using a cable driven mechanism was developed and assessed as part of a feasibility study. The design is capable of reproducing the angles required for straight walk and step turn; generates 712N of lifting force in plantarflexion, and shows passive stiffness comparable to a nonload bearing ankle impedance. To evaluate the performance of the ankle-foot prosthesis, a circular treadmill was developed to mimic human gait during steering. Preliminary results show that the device can appropriately simulate human gait with loading and unloading the ankle joint during the gait in circular paths.

Book Wearable Robotics

    Book Details:
  • Author : Jacob Rosen
  • Publisher : Academic Press
  • Release : 2019-11-16
  • ISBN : 0128146605
  • Pages : 551 pages

Download or read book Wearable Robotics written by Jacob Rosen and published by Academic Press. This book was released on 2019-11-16 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wearable Robotics: Systems and Applications provides a comprehensive overview of the entire field of wearable robotics, including active orthotics (exoskeleton) and active prosthetics for the upper and lower limb and full body. In its two major sections, wearable robotics systems are described from both engineering perspectives and their application in medicine and industry. Systems and applications at various levels of the development cycle are presented, including those that are still under active research and development, systems that are under preliminary or full clinical trials, and those in commercialized products. This book is a great resource for anyone working in this field, including researchers, industry professionals and those who want to use it as a teaching mechanism. Provides a comprehensive overview of the entire field, with both engineering and medical perspectives Helps readers quickly and efficiently design and develop wearable robotics for healthcare applications

Book Machine Learning for Critical Internet of Medical Things

Download or read book Machine Learning for Critical Internet of Medical Things written by Fadi Al-Turjman and published by Springer Nature. This book was released on 2022-02-03 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the applications, challenges, and future trends of machine learning in medical domain, including both basic and advanced topics. The book presents how machine learning is helpful in smooth conduction of administrative processes in hospitals, in treating infectious diseases, and in personalized medical treatments. The authors show how machine learning can also help make fast and more accurate disease diagnoses, easily identify patients, help in new types of therapies or treatments, model small-molecule drugs in pharmaceutical sector, and help with innovations via integrated technologies such as artificial intelligence as well as deep learning. The authors show how machine learning also improves the physician’s and doctor’s medical capabilities to better diagnosis their patients. This book illustrates advanced, innovative techniques, frameworks, concepts, and methodologies of machine learning that will enhance the efficiency and effectiveness of the healthcare system. Provides researchers in machine and deep learning with a conceptual understanding of various methodologies of implementing the technologies in medical areas; Discusses the role machine learning and IoT play into locating different virus and diseases across the globe, such as COVID-19, Ebola, and cervical cancer; Includes fundamentals and advances in machine learning in the medical field, supported by significant case studies and practical applications.

Book Soft Robotics in Rehabilitation

Download or read book Soft Robotics in Rehabilitation written by Amir Jafari and published by Academic Press. This book was released on 2021-02-20 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft Robotics in Rehabilitation explores the specific branch of robotics dealing with developing robots from compliant and flexible materials. Unlike robots built from rigid materials, soft robots behave the way in which living organs move and adapt to their surroundings and allow for increased flexibility and adaptability for the user. This book is a comprehensive reference discussing the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs. The book examines various techniques applied in soft robotics, including the development of soft actuators, rigid actuators with soft behavior, intrinsically soft actuators, and soft sensors. This book is perfect for graduate students, researchers, and professional engineers in robotics, control, mechanical, and electrical engineering who are interested in soft robotics, artificial intelligence, rehabilitation therapy, and medical and rehabilitation device design and manufacturing. - Outlines the application of soft robotic techniques to design platforms that provide rehabilitation therapy for disabled persons to help improve their motor functions - Discusses the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs - Offers readers the ability to find soft robotics devices, methods, and results for any limb, and then compare the results with other options provided in the book

Book Transferring Human Impedance Regulation Skills to Robots

Download or read book Transferring Human Impedance Regulation Skills to Robots written by Arash Ajoudani and published by Springer. This book was released on 2015-11-05 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces novel thinking and techniques to the control of robotic manipulation. In particular, the concept of teleimpedance control as an alternative method to bilateral force-reflecting teleoperation control for robotic manipulation is introduced. In teleimpedance control, a compound reference command is sent to the slave robot including both the desired motion trajectory and impedance profile, which are then realized by the remote controller. This concept forms a basis for the development of the controllers for a robotic arm, a dual-arm setup, a synergy-driven robotic hand, and a compliant exoskeleton for improved interaction performance.

Book Powered Prostheses

Download or read book Powered Prostheses written by Houman Dallali and published by Academic Press. This book was released on 2020-04-17 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Powered Prostheses: Design, Control, and Clinical Applications presents the state-of-the-art in design, control and application of assistive technologies used in rehabilitation, including powered prostheses used in lower and upper extremity amputees and orthosis used in the rehabilitation of various joint disorders. The progress made in this field over the last decade is so vast that any new researcher in this field will have to spend years digesting the main achievements and challenges that remain. This book provides a comprehensive vision of advances, along with the challenges that remain on the path to the development of true bionic technology. - Describes the latest assistive technologies that can help individuals deal with joint pain or limb loss - Presents a tangible and intuitive description of scientific achievements made - Highlights the existing technologies and devices that are available and used by amputees or patients with mobility limitations - Suggests solutions and new results that can further enhance assistive technologies

Book Lower limb Prosthetics

Download or read book Lower limb Prosthetics written by Norman Berger and published by . This book was released on 1997 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lower limb Robotic Devices

Download or read book Lower limb Robotic Devices written by Sai Kit Wu and published by . This book was released on 2012 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lower limb robotic devices, like prostheses and orthosis, are required to work closely with human limbs, and thus an effective control framework and reliable design are both critical. This dissertation presents novel methods to control a DC powered knee prosthesis, a pneumatic prosthesis, and the progress of controlling a multifunctional orthosis. Moreover, this dissertation also presents a novel pneumatic knee prosthesis design. A novel high-level controller controls the DC powered knee prosthesis by utilizing the Electromyography (EMG) with biomechanical model. The controller combines an active control component that reflects the wearer's motion intention, with a reactive control component that implements the controllable impedance critical to the safe and stable interaction. The effectiveness of the proposed control approach is demonstrated through the experimental results for arbitrary free swing and level walking. A sliding mode low-level controller is applied to control the pneumatic prosthesis to overcome the highly nonlinearity from the properties of pneumatic muscle and the design of prosthesis. The effectiveness of the controller is demonstrated though experiments. The progress of making a complete control algorithm for a multifunctional orthosis consists of two major parts. One is the user movement classification methods. There are a total of three classifiers: the walk-to-stop classifier, the speed-changing classifier, and the movement start classifier, which includes climbing up a stair, climbing down a stair and level walking. The classification rate of all three qualifiers is 90% or more. The second major part of the research is high-level controllers for different functions. A high-level fuzzy impedance controller, which increases the flexibility of a regular impedance controller, has been developed for speed adaptive walking control. The effectiveness of the controller is demonstrated through simulation. A novel knee prosthesis design which utilizes the rope pulley mechanism and slider crank mechanism. In the pulley design for the rope pulley mechanism, a superellipse pulley is chosen to give more variation. The parameters in those mechanisms and the prosthesis are optimized, so that the knee torque from the prosthesis is close to that in a biological leg. The design also reserves space for the components of an ankle prosthesis.

Book Neuro Robotics

    Book Details:
  • Author : Panagiotis Artemiadis
  • Publisher : Springer
  • Release : 2014-07-10
  • ISBN : 9401789320
  • Pages : 444 pages

Download or read book Neuro Robotics written by Panagiotis Artemiadis and published by Springer. This book was released on 2014-07-10 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for performance augmentation, which can seen as augmentation of abilities of healthy subjects or assistance in case of the mobility impaired. The third part of the book focuses on the inverse problem, i.e. how we can use robotic devices that physically interact with the human body, in order (a) to understand human motor control and (b) to provide therapy to neurologically impaired people or people with disabilities.

Book History of Mechanical Technology and Mechanical Design 2012

Download or read book History of Mechanical Technology and Mechanical Design 2012 written by Hong Sen Yan and published by Trans Tech Publications Ltd. This book was released on 2012-04-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume consists of selected papers from the proceedings of the International Conference on History of Mechanical Technology and Mechanical Design -2012 (ICHMTMD2012). This conference evolved from the China-Japan International Conference on History of Mechanical Technology (CJICHMT). Volume is indexed by Thomson Reuters CPCI-S (WoS). More than 100 papers, from Mainland China, Taiwan and Japan were submitted, to the present conference. All of the papers were subjected to peer review by at least two expert referees, and the best papers were selected for publication in this volume.

Book Advances in Mechatronics and Biomechanics towards Efficient Robot Actuation

Download or read book Advances in Mechatronics and Biomechanics towards Efficient Robot Actuation written by Jörn Malzahn and published by Frontiers Media SA. This book was released on 2019-06-28 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design of Robotic Quadruped Legs

Download or read book Design of Robotic Quadruped Legs written by Jacob Elijah McKenzie and published by . This book was released on 2012 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Prized for their performance on prepared surfaces, wheeled vehicles are often limited in mobility by rough and unstructured terrain. Conversely, systems that rely on legs have shown promising rough terrain performance but only a modest ability to achieve high speeds over flat terrain. The goal of this thesis is to develop four robotic legs that are capable of robust dynamic running over flat terrain. Demonstration of this ability is necessary to improve the viability of robotic legs as a propulsion system. Achieving true dynamic running presents many challenges, and the first step in prevailing over the difficulties this task presents is the development of a sound mechanical system. The leg designs presented here are based on the development of four design principles from both biological systems, dynamic simulations and previous research. These principles suggest that a leg design should: minimize passive mechanical impedance, minimize mass and inertia, maximize actuator strength and develop a balance between leg kinematics and robot use. To bring these principles into reality several unique design features were introduced including a doubly concentric actuator layout, synthetic fiber tendons to reduce bending loads in the legs, polymer leg links and the use of electric motors to their thermal limit. To accompany these technical features simulation-based design tools were developed that provide an intuitive insight into how altering design parameters of the leg may affect locomotion performance. The key feature of these tools is that they plot the forces that the leg is capable of imparting on the body for a given set of dynamic conditions. Single and multiple leg testing has shown that the legs perform well under dynamic loading and that they are capable producing vertical ground reaction forces larger than 800 N and horizontal forces larger than 150 N. Many of the design principles, features and tools developed may be used with a large variety of leg structures and actuation systems.

Book Genetic Algorithms in Applications

Download or read book Genetic Algorithms in Applications written by Rustem Popa and published by BoD – Books on Demand. This book was released on 2012-03-21 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic Algorithms (GAs) are one of several techniques in the family of Evolutionary Algorithms - algorithms that search for solutions to optimization problems by "evolving" better and better solutions. Genetic Algorithms have been applied in science, engineering, business and social sciences. This book consists of 16 chapters organized into five sections. The first section deals with some applications in automatic control, the second section contains several applications in scheduling of resources, and the third section introduces some applications in electrical and electronics engineering. The next section illustrates some examples of character recognition and multi-criteria classification, and the last one deals with trading systems. These evolutionary techniques may be useful to engineers and scientists in various fields of specialization, who need some optimization techniques in their work and who may be using Genetic Algorithms in their applications for the first time. These applications may be useful to many other people who are getting familiar with the subject of Genetic Algorithms.

Book Design and Control of Powered Lower Limb Prostheses

Download or read book Design and Control of Powered Lower Limb Prostheses written by Molei Wu and published by . This book was released on 2016 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the development of powered lower-limb prostheses, providing sufficient power and torque to support amputees' locomotion is a major challenge, considering prostheses' weight and size limits. Furthermore, regulating the power delivery during locomotion is equally important that gives amputees safe and natural movements. This dissertation aims to address these challenges by investigating new approaches in the actuation and control of powered lower-limb prostheses, with the overarching objective to obtain compact, powerful lower-limb prostheses that interact with amputees and the environment in a coordinated manner. The initial efforts were focused on the design and control of transfemoral (TF, also known as above-knee) prostheses powered by pneumatic muscles, an extraordinary actuator with superb power-to-weight ratio. The first prototype incorporates powered knee and ankle joints in a volumetric profile similar to that of human leg. The unique feature is a single-acting-spring-return mechanism, in which a single pneumatic muscle drives the motion in the torque-demanding direction, while a set of mechanical springs drives the motion in the opposite direction. A finite-state impedance controller has been developed for this prosthesis, which was demonstrated to provide a natural gait. Based on previous success, a novel type of pneumatic muscle, namely double-acting sleeve muscle (DASM), was examined to replace traditional pneumatic muscle. Incorporating a second chamber, the DASM is able to provide additional extensional force without using return springs. Therefore, the prosthesis can be significantly simplified into a more compact and lightweight device. Compared with pneumatic muscles, traditional cylinder-type actuators are more technologically mature. Therefore, the subsequent efforts were to develop a pneumatic cylinder-actuated TF prosthesis, which has great potential for real-world applications. All peripheral components were integrated, including a carbon fiber air tank as the energy source, and the prosthesis' capability of independent, untethered operation was demonstrated in human walking test. In addition to the improvement of prosthetic design, control methods were also investigated. The results include an integrated walking -- stair climbing controller and a sit-to-stand controller. Both were developed based on biomechanical analysis of the knee dynamics in human locomotion. In the walking -- stair climbing control system, an improved finite state impedance controller was constructed, which incorporates a unique time function to enable gradual energy injection during weight acceptance phase. An intuitive thigh position-based switching condition was introduced to merge the walking and stair climbing controllers into one system. In the sit-to-stand controller, a similar controller was established, which eliminates the need for a state machine and significantly simplifies the controller tuning and implementation. The human testing was conducted with results demonstrating the effectiveness of both control systems.

Book Effective Upper and Lower Extremity Prosthesis

Download or read book Effective Upper and Lower Extremity Prosthesis written by C. A. Phillips and published by CRC Press. This book was released on 1989 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: