EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design and Implementation of Plasmonic Cavities in Thin Metallic Films

Download or read book Design and Implementation of Plasmonic Cavities in Thin Metallic Films written by John Liu (Photovoltaics engineer) and published by Stanford University. This book was released on 2010 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metals contain a sea of free electrons that are easily driven into collective oscillation by electromagnetic waves. As a result, small metal objects can serve as antennas that strongly scatter light. At the same time, extended metal surfaces have been shown to guide surface plasmons (photons bound to surface charge oscillations) that can confine light to deep sub-wavelength dimensions. Patterned metallic films can combine both the scattering and guiding properties of metals to capture and concentrate light from free space into a photodetector or to control the emission of light from emitting media. We first consider the wide range of functions that can be achieved in directing light emission with the help of smooth metallic films. We then describe how light interacts with patterned metallic films and present a detailed study of the effect of a single metallic groove on the scattering and surface plasmon guiding processes. This has lead to our discovery of new, exciting opportunities for dense optical functionality with non-periodically patterned metallic films. We show that a micronscale structure consisting of just two grooves in a metal film can lead to directional light coupling and wavelength splitting with a contrast ratio of 3:1. Our understanding is then generalized giving rise to a fast, simplified optimization of large non-periodic structures for a desired function. Lastly we consider the efficiency and bandwidth limits of coupling light through sub-wavelength slits for photodetection. We outline a path to efficient, spectrally selective detection which may find application in compact, polarization sensitive, multi-wavelength plasmonic detectors.

Book Design and Implementation of Plasmonic Cavities in Thin Metallic Films

Download or read book Design and Implementation of Plasmonic Cavities in Thin Metallic Films written by John Liu and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Metals contain a sea of free electrons that are easily driven into collective oscillation by electromagnetic waves. As a result, small metal objects can serve as antennas that strongly scatter light. At the same time, extended metal surfaces have been shown to guide surface plasmons (photons bound to surface charge oscillations) that can confine light to deep sub-wavelength dimensions. Patterned metallic films can combine both the scattering and guiding properties of metals to capture and concentrate light from free space into a photodetector or to control the emission of light from emitting media. We first consider the wide range of functions that can be achieved in directing light emission with the help of smooth metallic films. We then describe how light interacts with patterned metallic films and present a detailed study of the effect of a single metallic groove on the scattering and surface plasmon guiding processes. This has lead to our discovery of new, exciting opportunities for dense optical functionality with non-periodically patterned metallic films. We show that a micronscale structure consisting of just two grooves in a metal film can lead to directional light coupling and wavelength splitting with a contrast ratio of 3:1. Our understanding is then generalized giving rise to a fast, simplified optimization of large non-periodic structures for a desired function. Lastly we consider the efficiency and bandwidth limits of coupling light through sub-wavelength slits for photodetection. We outline a path to efficient, spectrally selective detection which may find application in compact, polarization sensitive, multi-wavelength plasmonic detectors.

Book Analysis  Design  and Manufacture of Thin film Plasmonic Materials

Download or read book Analysis Design and Manufacture of Thin film Plasmonic Materials written by James Peter Dolas and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Investigation of analysis methods of plasmonic crystals and metamaterials using traditional optical analysis, Planewave Expansion Method, and multiphysics software was conducted. 1D and 2D plasmonic crystals were studied and simulated for field enhancement. The sub-diffraction superlens and anisotropic lenses based on metamaterials were studied and an anisotropic lens was designed through computation. Comparison to existing work was made for evaluation of use in sub-diffraction limit nano-lithography. Investigation of manufacturing methods for thin-film-based plasmonic materials was carried-out. Ultra-flat metal methods involving template-stripping were used for superior surface performance key in plasmonic applications. Template-stripping through metal diffusion bonding and adhesive bonding were investigated, discussed, and employed with patterned ultra-flat metal films.

Book Multispectral Image Sensors Using Metasurfaces

Download or read book Multispectral Image Sensors Using Metasurfaces written by Xin He and published by Springer Nature. This book was released on 2021-12-03 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents how metasurfaces are exploited to develop new low-cost single sensor based multispectral cameras. Multispectral cameras extend the concept of conventional colour cameras to capture images with multiple color bands and with narrow spectral passbands. Images from a multispectral camera can extract significant amount of additional information that the human eye or a normal camera fails to capture and thus have important applications in precision agriculture, forestry, medicine, object identifications, and classifications. Conventional multispectral cameras are made up of multiple image sensors each externally fitted with a narrow passband wavelength filters, optics and multiple electronics. The need for multiple sensors for each band results in a number of problems such as being bulky, power hungry and suffering from image co-registration problems which in turn limits their wide usage. The above problems can be eliminated if a multispectral camera is developed using one single image sensor.​

Book Plasmonic Devices Employing Extreme Light Concentration

Download or read book Plasmonic Devices Employing Extreme Light Concentration written by Ragip Pala and published by Stanford University. This book was released on 2010 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of integrated electronic and photonic circuits has led to remarkable data processing and transport capabilities that permeate almost every facet of our daily lives. Scaling these devices to smaller and smaller dimensions has enabled faster, more power efficient and inexpensive components but has also brought about a myriad of new challenges. One very important challenge is the growing size mismatch between electronic and photonic components. To overcome this challenge, we will need to develop radically new device technologies that can facilitate information transport between nanoscale components at optical frequencies and form a bridge between the world of nano-electronic and micro-photonics. Plasmonics is an exciting new field of science and technology that aims to exploit the unique optical properties of metallic nanostructures to gain a new level of control over light-matter interactions. The use of nanometallic (plasmonic) structures may help bridge the size gap between the two technologies and enable an increased synergy between chip-scale electronics and photonics. In the first part of this dissertation we analyze the performance of a surface plasmon-polariton all-optical switch that combines the unique physical properties of small molecules and metallic (plasmonic) nanostructures. The switch consists of a pair of gratings defined on an aluminum film coated with a thin layer of photochromic (PC) molecules. The first grating couples a signal beam consisting of free space photons to SPPs that interact effectively with the PC molecules. These molecules can reversibly be switched between transparent and absorbing states using a free space optical pump. In the transparent (signal "on") state, the SPPs freely propagate through the molecular layer, and in the absorbing (signal "off") state, the SPPs are strongly attenuated. The second grating serves to decouple the SPPs back into a free space optical beam, enabling measurement of the modulated signal with a far-field detector. We confirm and quantify the switching behavior of the PC molecules by using a surface plasmon resonance spectroscopy. The quantitative experimental and theoretical analysis of the nonvolatile switching behavior guides the design of future nanoscale optically or electrically pumped optical switches. In the second part of the dissertation we provide a critical assessment of the opportunities for use of plasmonic nanostructures in thin film solar cell technology. Thin-film solar cells have attracted significant attention as they provide a viable pathway towards reduced materials and processing costs. Unfortunately, the materials quality and resulting energy conversion efficiencies of such cells is still limiting their rapid large-scale implementation. The low efficiencies are a direct result of the large mismatch between electronic and photonic length scales in these devices; the absorption depth of light in popular PV semiconductors tends to be longer than the electronic (minority carrier) diffusion length in deposited thin-film materials. As a result, charge extraction from optically thick cells is challenging due to carrier recombination in the bulk of the semiconductor. We discuss how light absorption could be improved in ultra-thin layers of active material making use of large scattering cross sections of plasmonic structures. We present a combined computational-experimental study aimed at optimizing plasmon-enhanced absorption using periodic and non-periodic metal nanostructure arrays.

Book Quantum Plasmonics

    Book Details:
  • Author : Sergey I. Bozhevolnyi
  • Publisher : Springer
  • Release : 2016-11-26
  • ISBN : 3319458205
  • Pages : 338 pages

Download or read book Quantum Plasmonics written by Sergey I. Bozhevolnyi and published by Springer. This book was released on 2016-11-26 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest results of quantum properties of light in the nanostructured environment supporting surface plasmons, including waveguide quantum electrodynamics, quantum emitters, strong-coupling phenomena and lasing in plasmonic structures. Different approaches are described for controlling the emission and propagation of light with extreme light confinement and field enhancement provided by surface plasmons. Recent progress is reviewed in both experimental and theoretical investigations within quantum plasmonics, elucidating the fundamental physical phenomena involved and discussing the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.

Book Plasmonic Effects in Metal semiconductor Nanostructures

Download or read book Plasmonic Effects in Metal semiconductor Nanostructures written by Alexey A. Toropov and published by Oxford University Press, USA. This book was released on 2015 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most promising trends in modern nanophotonics is the employment of plasmonic effects in the engineering of advanced device nanostructures. This book implements the binocular vision of such a complex metal-semiconductor system, examining both the constituents and reviewing the characteristics of promising constructive materials.

Book Solid state Electronics and Photonics in Biology and Medicine 5

Download or read book Solid state Electronics and Photonics in Biology and Medicine 5 written by Y.-L. Wang and published by The Electrochemical Society. This book was released on 2018-05-04 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optical Properties of Condensed Matter and Applications

Download or read book Optical Properties of Condensed Matter and Applications written by Jai Singh and published by John Wiley & Sons. This book was released on 2006-10-02 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following a semi-quantitative approach, this book presents asummary of the basic concepts, with examples and applications, andreviews recent developments in the study of optical properties ofcondensed matter systems. Key Features: Covers basic knowledge as well as application topics Includes theory, experimental techniques and current anddeveloping applications Timely and useful contribution to the literature Written by internationally respected contributors working inphysics and electrical engineering departments and governmentlaboratories

Book Plasmon Logic Gates Designed by Modal Engineering of 2 dimensional Crystalline Metal Cavities

Download or read book Plasmon Logic Gates Designed by Modal Engineering of 2 dimensional Crystalline Metal Cavities written by Upkar Kumar and published by . This book was released on 2017 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this PhD work is to design, fabricate and characterize plasmonic devices based on highly crystalline metallic cavities for the two-dimensional information transfer and logic gate operations. First, we thoroughly characterize the optical response of ultra-thin gold colloidal cavities of sub-micronic size (400 to 900 nm) by dark- field spectroscopy (Fig. 1a). The dispersion of the high order plasmonic resonances of the cavities is measured and compared with a good agreement to simulations obtained with a numerical based on the Green Dyadic Method (GDM). We further extend our experiments to systematically tune the spectral responses of these colloidal nanoprisms in vicinity of metallic thin film substrates. A comprehensive study of these sub-micronic size cavity in bowtie antenna configuration is performed. We show a polarization-dependent field enhancement and a nanoscale field confinement at specific locations in these bowtie antennas. We systematically study the effects that could potentially affect the plasmonic resonances by non-linear photon luminescence microscopy, which has proved to be an efficient tool to observe the surface plasmon local density of states (SPLDOS). Inparticular, we show that an effective spatially and spectrally tuning of the high order plasmonic resonances can be achieved by the modification of the substrate (dielectric or metallic), by the controlled insertion of a defect inside a cavity or by the weak electromagnetic coupling between two adjacent cavities. The rational tailoring of the spatial distribution of the 2D confined resonances was applied to the design of devices with tunable plasmon transmittance between two connected cavities. The specific geometries are produced by focused ion milling crystalline gold platelets. The devices are characterized by non-linear luminescence mapping in confocal and leakage radiation microscopy techniques. The latter offers a unique way to observe propagating SPP signal over a 2D plasmonic cavity. We demonstrate the polarization-dependent mode-mediated transmittance for devices withadequate symmetry. The results are faithfully reproduced with our simulation tool based on Green dyadic method. Finally, we extend our approach to the design and fabrication of a reconfigurable logic gate device with multiple inputs and outputs. We demonstrate that 10 out of the possible 12 2-input 1-output logic gates can be implemented on the same structure by choosing the two input and the one output points. We also demonstrate reconfiguration of the device by changing polarization of the incident beam, set of input locations and threshold of the non-linear luminescence readout signal.

Book Plasmonics Based Optical Sensors and Detectors

Download or read book Plasmonics Based Optical Sensors and Detectors written by Banshi D. Gupta and published by CRC Press. This book was released on 2023-08-24 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasmonics stems from the surface charge density oscillations at metal–dielectric interface, leading to extremely strong light–matter interactions. In the past few decades, plasmonics has become one of the most favorite fields/techniques in realizing high-performance photonic devices. For this purpose, different new concepts, such as exploration of different radiation frequency regions, two-dimensional materials/heterostructures, and different types of substrates for the excitation of plasmons have been investigated for plasmonics-based sensors and detectors. This book focuses on the recent and advanced works on optical sensors and detectors utilizing plasmonic techniques for opto-electronic applications. The book is unique as it describes both sensors and detectors based on plasmonics and their practical applications in a single book, a feature not found in any book so far.

Book Plasmonics  Fundamentals and Applications

Download or read book Plasmonics Fundamentals and Applications written by Stefan Alexander Maier and published by Springer Science & Business Media. This book was released on 2007-05-16 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.

Book Practical Production of Optical Thin Films

Download or read book Practical Production of Optical Thin Films written by Ronald R. Willey and published by Lulu.com. This book was released on 2016-11-15 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the typical equipment, materials, processes, monitoring, and control used in the practical fabrication/production of optical thin films. It focuses on the practical elements needed to actually produce optical coatings.

Book Optical Properties of Materials and Their Applications

Download or read book Optical Properties of Materials and Their Applications written by Jai Singh and published by John Wiley & Sons. This book was released on 2020-01-07 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. Optical Properties of Materials and Their Applications, 2nd Edition starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. Covers all of the fundamentals and applications of optical properties of materials Includes theory, experimental techniques, and current and developing applications Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories Optical Properties of Materials and Their Applications, 2nd Edition is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.

Book Nanostructured Solar Cells

Download or read book Nanostructured Solar Cells written by Narottam Das and published by BoD – Books on Demand. This book was released on 2017-02-22 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured solar cells are very important in renewable energy sector as well as in environmental aspects, because it is environment friendly. The nano-grating structures (such as triangular or conical shaped) have a gradual change in refractive index which acts as a multilayer antireflective coating that is leading to reduced light reflection losses over broadband ranges of wavelength and angle of incidence. There are different types of losses in solar cells that always reduce the conversion efficiency, but the light reflection loss is the most important factor that decreases the conversion efficiency of solar cells significantly. The antireflective coating is an optical coating which is applied to the surface of lenses or any optical devices to reduce the light reflection losses. This coating assists for the light trapping capturing capacity or improves the efficiency of optical devices, such as lenses or solar cells. Hence, the multilayer antireflective coatings can reduce the light reflection losses and increases the conversion efficiency of nanostructured solar cells.

Book Replication of Patterned Thin film Structures for Use in Plasmonics and Metamaterials

Download or read book Replication of Patterned Thin film Structures for Use in Plasmonics and Metamaterials written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The present invention provides templating methods for replicating patterned metal films from a template substrate such as for use in plasmonic devices and metamaterials. Advantageously, the template substrate is reusable and can provide plural copies of the structure of the template substrate. Because high-quality substrates that are inherently smooth and flat are available, patterned metal films in accordance with the present invention can advantageously provide surfaces that replicate the surface characteristics of the template substrate both in the patterned regions and in the unpatterned regions.