EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design and Experimental Studies of Turbine Cooling

Download or read book Design and Experimental Studies of Turbine Cooling written by T. Hiroki and published by . This book was released on 1974 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the Gas Turbine Conference & Products Show, Zurich, Switzerland, Mar. 30 - Apr. 4, 1974.

Book Experimental and Computational Investigation of Turbine Cooling Designs Incorporating a Thermal Barrier Coating

Download or read book Experimental and Computational Investigation of Turbine Cooling Designs Incorporating a Thermal Barrier Coating written by Matthew Jeffrey Horner and published by . This book was released on 2020 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few studies in the open literature have investigated the effect of thermal barrier coatings (TBC) on gas turbine component thermal protection designs. The current study evaluated shaped hole film cooling and internal cooling enhanced with rib turbulators separately as well as part of an integrated design incorporating a TBC. The design and construction of a matched-Biot number test section is discussed along with an evaluation of uncertainty. Enhanced internal cooling was found to provide a 44% increase in overall effectiveness without a TBC. The TBC provided a 47% increase in spatially-averaged effectiveness on the metal-TBC interface. The optimum velocity ratio with a TBC was shown to be lower than that without a TBC as the internal cooling effects were reduced with the extraction of coolant. A RANS conjugate heat transfer study closely predicted the performance of the configurations tested without a TBC, but over-predicted the effectiveness of designs incorporating a TBC

Book Experimental Investigation of Air cooled Turbine Blades in Turbojet Engine

Download or read book Experimental Investigation of Air cooled Turbine Blades in Turbojet Engine written by Herman H. Ellerbrock (Jr.) and published by . This book was released on 1951 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational and Experimental Investigation of Vortex Cooling of a Gas Turbine Blade Using 3 D Stereo Particle Image Velocimetry and Liquid Crystals

Download or read book Computational and Experimental Investigation of Vortex Cooling of a Gas Turbine Blade Using 3 D Stereo Particle Image Velocimetry and Liquid Crystals written by Daisy Galeana and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The limiting factor for most gas turbines has been the turbine inlet temperature. Furthermore, higher pressure ratios and turbine inlet temperatures improve the efficiencies on the gas turbine. A big focus has been on new schemes of internal cooling designs of turbine blades, using pressurized air from the engine compressor, and break-through in blade metallurgy, in order to achieve higher turbine inlet temperatures. Significant research has been ongoing for decades to design an internal cooling system for the first stage of the turbine blade consequently higher turbine inlet temperatures can be achieved. The challenging engineering intricacies related to improving the efficiency of a gas turbine engine come with the need to maximize the efficiency of the internal cooling of the turbine blade to withstand the high turbine inlet temperature. Understanding the fluid mechanics and heat transfer of internal blade cooling is therefore of paramount importance. This dissertation presents the impact of swirl flow cooling on the heat transfer of a gas turbine blade cooling passage to understand the mechanics of internal blade cooling. The focus is the continuous cooling flow that must be maintained via nonstop injection of tangential flow, whereby swirl flow is generated. The experimental investigation is presented first with three-dimensional (3-D) Stereo-Particle Image Velocimetry (Stereo-PIV) and second Thermochromic Liquid Crystal (TLC) of a swirl flow that models a gas turbine blade internal cooling configuration. The study is intended to provide an evaluation of the developments of swirl flow cooling methodology utilizing 3-D Stereo-PIV and liquid crystals. The objective of the experimental models is to determine the critical swirl number that has the potential to deliver the maximum axial velocity results with the highest heat transfer at three different Reynolds numbers, 7,000, 14,000, and 21,000. The swirl flow cooling methodology comprises of cooling air channeling through the blade's internal passages lowering the metal temperature, therefore the experimental cylindrical chamber is made of acrylic allowing detailed measurements and includes seven discrete tangential air inlets designed to create the swirl flow. Additionally, a 3D domain fluent setup employing a steady-state pressure-based solver with a standard k-epsilon turbulence model was applied. The energy equations were activated to handle the temperature effect; the gravitational acceleration is accounted for. Important variations of the swirl number are present near the air inlets and decrease with downstream distance as predicted since the second half of the chamber has no more inlets. The axial velocity reaches the maximum downstream in the second half of the chamber. The circumferential velocity decreases downstream distance and reaches the highest towards the center of the chamber. As part of the results relatively low heat transfer rates were observed near the upstream end of the cylindrical chamber, resulting from a low momentum swirl flow as well as crossflow effects. The TLC heat transfer results exemplify how the Nusselt Number (Nu) measured favorably at the midstream of the chamber and values decline downstream. Furthermore, experimental results when compared to the Computational Fluid Dynamics analysis are compatible with each other.

Book Gas Turbine Blade Cooling

Download or read book Gas Turbine Blade Cooling written by Chaitanya D Ghodke and published by SAE International. This book was released on 2018-12-10 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Book Impingement Jet Cooling in Gas Turbines

Download or read book Impingement Jet Cooling in Gas Turbines written by R.S. Amano and published by WIT Press. This book was released on 2014-05-28 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Among the gas turbine cooling technologies, impingement jet cooling is one of the most effective in terms of cooling effectiveness, manufacturability and cost. The chapters contained in this book describe research on state-of-the-art and advanced cooling technologies that have been developed, or that are being researched, with a variety of approaches from theoretical, experimental, and CFD studies. The authors of the chapters have been selected from some of the most active researchers and scientists on the subject. This is the first to book published on the topics of gas turbines and heat transfer to focus on impingement cooling alone.

Book Theoretical and experimental studies in transpiration cooling

Download or read book Theoretical and experimental studies in transpiration cooling written by Pieter Grootenhuis and published by . This book was released on 1957 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Gas Turbine Heat Transfer and Cooling Technology  Second Edition

Download or read book Gas Turbine Heat Transfer and Cooling Technology Second Edition written by Je-Chin Han and published by CRC Press. This book was released on 2012-11-27 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Book Experimental and Computational Investigation of Inlet Temperature Profile and Cooling Effects on a One and One half Stage High pressure Turbine Operating at Design corrected Conditions

Download or read book Experimental and Computational Investigation of Inlet Temperature Profile and Cooling Effects on a One and One half Stage High pressure Turbine Operating at Design corrected Conditions written by Randall Melson Mathison and published by . This book was released on 2009 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: As the demand for greater efficiency and reduced specific fuel consumption from gas turbine engines continues to increase, design tools must be improved to better handle complicated flow features such as vane inlet temperature distortions, film cooling, and disk purge flow. In order to understand the physics behind these features, a new generation of turbine experiments is needed to investigate these features of interest for a realistic environment. This dissertation presents for the first time measurements and analysis of the flow features of a high-pressure one and one-half stage turbine operating at design corrected conditions with vane and purge cooling as well as vane inlet temperature profile variation. It utilizes variation of cooling flow rates from independent circuits through the same geometry to identify the regions of cooling influence on the downstream blade row. The vane outer cooling circuit, which supplies the film cooling on the outer endwall of the vane and the trailing edge injection from the vane, has the largest influence on temperature and heat-flux levels for the uncooled blade. Purge cooling has a more localized effect, but it does reduce the Stanton Number deduced for the blade platform and on the pressure and suction surfaces of the blade airfoil. Flow from the vane inner cooling circuit is distributed through film cooling holes across the vane airfoil surface and inner endwall, and its injection is entirely designed with vane cooling in mind. As such, it only has a small influence on the temperature and heat-flux observed for the downstream blade row. In effect, the combined influence of these three cooling circuits can be observed for every instrumented surface of the blade. The influence of cooling on the pressure surface of the uncooled blade is much smaller than on the suction surface, but a local area of influence can be observed near the platform. This is also the first experimental program to investigate the influence of vane inlet temperature profile on a cooled turbine operating at design corrected conditions. The vane inlet temperature profile has a substantial effect on the temperature measured at the blade leading edge and the Stanton Numbers deduced for the uncooled blade airfoil. While the temperature profile is slightly reshaped passing through the vane, a radial or hot streak profile introduced at the vane inlet can still be clearly measured at the blade. Hot streak magnitude and alignment also influence the blade temperature and heat-flux measurements. A concurrent effort to predict the blade leading edge and platform temperatures for the uncooled portions of this experiment using the commercial code FINE/Turbo is also presented. This investigation is not intended as a detailed computational study but as a check of current code implementation practices and a sanity check on the data. The best predictions are generated using isothermal wall boundary conditions with the nonlinear harmonic method. This is a novel prediction type that could only be performed using a development version of FINE/Turbo.

Book Heat Transfer in Gas Turbines

Download or read book Heat Transfer in Gas Turbines written by Bengt Sundén and published by Witpress. This book was released on 2001 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Book Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

Download or read book Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels written by and published by . This book was released on 2015 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in modern turbine engines; and What advancements in film cooling hole geometry and design can increase effectiveness of film cooling in turbines burning high-hydrogen coal syngas due to the higher heat loads and mass flow rates of the core flow? Experimental and numerical investigations of advanced cooling geometries that can improve resistance to surface deposition were performed. The answers to these questions were investigated through experimental measurements of turbine blade surface temperature and coolant coverage (via infrared camera images and thermocouples) and time-varying surface roughness in the NETL high-pressure combustion rig with accelerated, simulated surface deposition and advanced cooling hole concepts, coupled with detailed materials analysis and characterization using conventional methods of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), 3-D Surface Topography (using a 3-D stylus profilometer). Detailed surface temperatures and cooling effectiveness could not be measured due to issues with the NETL infrared camera system. In collaboration with faculty startup funding from the principal investigator, experimental and numerical investigations were performed of an advanced film cooling hole geometry, the anti-vortex hole (AVH), focusing on improving cooling effectiveness and decreasing the counter-rotating vortex of conventional cooling holes which can entrain mainstream particulate matter to the surface. The potential benefit of this program is in gaining a fundamental understanding of how the use of alternative fuels will effect the operation of modern gas turbine engines, providing valuable data for more effective cooling designs for future turbine systems utilizing alternative fuels.

Book Experimental and Computational Investigation of Film Cooling on a Large Scale C3X Turbine Vane Including Conjugate Effects

Download or read book Experimental and Computational Investigation of Film Cooling on a Large Scale C3X Turbine Vane Including Conjugate Effects written by Thomas Earl Dyson and published by . This book was released on 2012 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study focused on the improvement of film cooling for gas turbine vanes using both computational and experimental techniques. The experimental component used a matched Biot number model to measure scaled surface temperature (overall effectiveness) distributions representative of engine conditions for two new configurations. One configuration consisted of a single row of holes on the pressure surface while the other used numerous film cooling holes over the entire vane including a showerhead. Both configurations used internal impingement cooling representative of a 1st vane. Adiabatic effectiveness was also measured. No previous studies had shown the effect of injection on the mean and fluctuating velocity profiles for the suction surface, so measurements were made at two locations immediately upstream of film cooling holes from the fully cooled cooling configuration. Different blowing conditions were evaluated. Computational tools are increasingly important in the design of advanced gas turbine engines and validation of these tools is required prior to integration into the design process. Two film cooling configurations were simulated and compared to past experimental work. Data from matched Biot number experiments was used to validate the overall effectiveness from conjugate simulations in addition to adiabatic effectiveness. A simulation of a single row of cooling holes on the suction side also gave additional insight into the interaction of film cooling jets with the thermal boundary layer. A showerhead configuration was also simulated. The final portion of this study sought to evaluate the performance of six RANS models (standard, realizable, and renormalization group k-[epsilon]; standard k-[omega]; k-[omega] SST; and Transition SST) with respect to the prediction of thermal boundary layers. The turbulent Prandtl number was varied to test a simple method for improvement of the thermal boundary layer predictions.

Book Experimental Investigation of Air cooled Turbine Blades in Turbojet Engine

Download or read book Experimental Investigation of Air cooled Turbine Blades in Turbojet Engine written by Francis S. Stepka and published by . This book was released on 1954 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: