EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Descriptive Topology in Selected Topics of Functional Analysis

Download or read book Descriptive Topology in Selected Topics of Functional Analysis written by Jerzy Kąkol and published by Springer Science & Business Media. This book was released on 2011-08-30 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Descriptive Topology in Selected Topics of Functional Analysis" is a collection of recent developments in the field of descriptive topology, specifically focused on the classes of infinite-dimensional topological vector spaces that appear in functional analysis. Such spaces include Fréchet spaces, (LF)-spaces and their duals, and the space of continuous real-valued functions C(X) on a completely regular Hausdorff space X, to name a few. These vector spaces appear in functional analysis in distribution theory, differential equations, complex analysis, and various other analytical settings. This monograph provides new insights into the connections between the topological properties of linear function spaces and their applications in functional analysis.

Book Descriptive Topology in Selected Topics of Functional Analysis

Download or read book Descriptive Topology in Selected Topics of Functional Analysis written by Jerzy Kąkol and published by Springer. This book was released on 2025-01-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Descriptive Topology and Functional Analysis II

Download or read book Descriptive Topology and Functional Analysis II written by Juan Carlos Ferrando and published by Springer. This book was released on 2019-06-02 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of a meeting on Topology and Functional Analysis, and is dedicated to Professor Manuel López-Pellicer's mathematical research. Covering topics in descriptive topology and functional analysis, including topological groups and Banach space theory, fuzzy topology, differentiability and renorming, tensor products of Banach spaces and aspects of Cp-theory, this volume is particularly useful to young researchers wanting to learn about the latest developments in these areas.

Book Descriptive Topology and Functional Analysis

Download or read book Descriptive Topology and Functional Analysis written by Juan Carlos Ferrando and published by Springer. This book was released on 2016-09-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Descriptive topology and functional analysis, with extensive material demonstrating new connections between them, are the subject of the first section of this work. Applications to spaces of continuous functions, topological Abelian groups, linear topological equivalence and to the separable quotient problem are included and are presented as open problems. The second section is devoted to Banach spaces, Banach algebras and operator theory. Each chapter presents a lot of worthwhile and important recent theorems with an abstract discussing the material in the chapter. Each chapter can almost be seen as a survey covering a particular area.

Book Functional Analysis and Continuous Optimization

Download or read book Functional Analysis and Continuous Optimization written by José M. Amigó and published by Springer Nature. This book was released on 2023-07-01 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book includes selected contributions presented at the "International Meeting on Functional Analysis and Continuous Optimization" held in Elche (Spain) on June 16–17, 2022. Its contents cover very recent results in functional analysis, continuous optimization and the interplay between these disciplines. Therefore, this book showcases current research on functional analysis and optimization with individual contributions, as well as new developments in both areas. As a result, the reader will find useful information and stimulating ideas.

Book Topological Vector Spaces and Their Applications

Download or read book Topological Vector Spaces and Their Applications written by V.I. Bogachev and published by Springer. This book was released on 2017-05-16 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. Overall, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.

Book Advanced Courses Of Mathematical Analysis V   Proceedings Of The Fifth International School

Download or read book Advanced Courses Of Mathematical Analysis V Proceedings Of The Fifth International School written by Juan Carlos Navarro Pascual and published by World Scientific. This book was released on 2016-06-24 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains recent papers by several specialists in different fields of mathematical analysis. It offers a reasonably wide perspective of the current state of research, and new trends, in areas related to measure theory, harmonic analysis, non-associative structures in functional analysis and summability in locally convex spaces.Those interested in researching any areas of mathematical analysis will find here numerous suggestions on possible topics with an important impact today. Often, the contributions are presented in an expository nature and this makes the discussed topics accessible to a more general audience.

Book Topology and Borel Structure

Download or read book Topology and Borel Structure written by and published by Elsevier. This book was released on 2011-08-26 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topology and Borel Structure

Book A Cp Theory Problem Book

Download or read book A Cp Theory Problem Book written by Vladimir V. Tkachuk and published by Springer. This book was released on 2016-04-05 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fourth volume in Vladimir Tkachuk's series on Cp-theory gives reasonably complete coverage of the theory of functional equivalencies through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory, the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research. The book presents complete and up-to-date information on the preservation of topological properties by homeomorphisms of function spaces. An exhaustive theory of t-equivalent, u-equivalent and l-equivalent spaces is developed from scratch. The reader will also find introductions to the theory of uniform spaces, the theory of locally convex spaces, as well as the theory of inverse systems and dimension theory. Moreover, the inclusion of Kolmogorov's solution of Hilbert's Problem 13 is included as it is needed for the presentation of the theory of l-equivalent spaces. This volume contains the most important classical results on functional equivalencies, in particular, Gul'ko and Khmyleva's example of non-preservation of compactness by t-equivalence, Okunev's method of constructing l-equivalent spaces and the theorem of Marciszewski and Pelant on u-invariance of absolute Borel sets.

Book Banach Space Theory

    Book Details:
  • Author : Marián Fabian
  • Publisher : Springer Science & Business Media
  • Release : 2011-02-04
  • ISBN : 1441975152
  • Pages : 820 pages

Download or read book Banach Space Theory written by Marián Fabian and published by Springer Science & Business Media. This book was released on 2011-02-04 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt: Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodým property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.

Book Smooth Analysis in Banach Spaces

Download or read book Smooth Analysis in Banach Spaces written by Petr Hájek and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-10-29 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about the subject of higher smoothness in separable real Banach spaces. It brings together several angles of view on polynomials, both in finite and infinite setting. Also a rather thorough and systematic view of the more recent results, and the authors work is given. The book revolves around two main broad questions: What is the best smoothness of a given Banach space, and its structural consequences? How large is a supply of smooth functions in the sense of approximating continuous functions in the uniform topology, i.e. how does the Stone-Weierstrass theorem generalize into infinite dimension where measure and compactness are not available? The subject of infinite dimensional real higher smoothness is treated here for the first time in full detail, therefore this book may also serve as a reference book.

Book Renormings in Banach Spaces

Download or read book Renormings in Banach Spaces written by Antonio José Guirao and published by Springer Nature. This book was released on 2022-08-23 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents an up-to-date panorama of the different techniques and results in the large field of renorming in Banach spaces and its applications. The reader will find a self-contained exposition of the basics on convexity and differentiability, the classical results in building equivalent norms with useful properties, and the evolution of the subject from its origin to the present days. Emphasis is done on the main ideas and their connections. The book covers several goals. First, a substantial part of it can be used as a text for graduate and other advanced courses in the geometry of Banach spaces, presenting results together with proofs, remarks and developments in a structured form. Second, a large collection of recent contributions shows the actual landscape of the field, helping the reader to access the vast existing literature, with hints of proofs and relationships among the different subtopics. Third, it can be used as a reference thanks to comprehensive lists and detailed indices that may lead to expected or unexpected information. Both specialists and newcomers to the field will find this book appealing, since its content is presented in such a way that ready-to-use results may be accessed without going into the details. This flexible approach, from the in-depth reading of a proof to the search for a useful result, together with the fact that recent results are collected here for the first time in book form, extends throughout the book. Open problems and discussions are included, encouraging the advancement of this active area of research.

Book Functional Analysis and Infinite Dimensional Geometry

Download or read book Functional Analysis and Infinite Dimensional Geometry written by Marian Fabian and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the basic principles of functional analysis and areas of Banach space theory that are close to nonlinear analysis and topology. The text can be used in graduate courses or for independent study. It includes a large number of exercises of different levels of difficulty, accompanied by hints.

Book Functional Analysis

    Book Details:
  • Author : R.E. Edwards
  • Publisher : Courier Corporation
  • Release : 2012-10-25
  • ISBN : 0486145107
  • Pages : 802 pages

Download or read book Functional Analysis written by R.E. Edwards and published by Courier Corporation. This book was released on 2012-10-25 with total page 802 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book contains an enormous amount of information — mathematical, bibliographical and historical — interwoven with some outstanding heuristic discussions." — Mathematical Reviews. In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the end of each chapter. Beginning with a chapter of preliminaries on set theory and topology, Dr. Edwards then presents detailed, in-depth discussions of vector spaces and topological vector spaces, the Hahn-Banach theorem (including applications to potential theory, approximation theory, game theory, and other fields) and fixed-point theorems. Subsequent chapters focus on topological duals of certain spaces: radon measures, distribution and linear partial differential equations, open mapping and closed graph theorems, boundedness principles, duality theory, the theory of compact operators and the Krein-Milman theorem and its applications to commutative harmonic analysis. Clearly and concisely written, Dr. Edwards's book offers rewarding reading to mathematicians and physicists with an interest in the important field of functional analysis. Because of the broad scope of its coverage, this volume will be especially valuable to the reader with a basic knowledge of functional analysis who wishes to learn about parts of the subject other than his own specialties. A comprehensive 32-page bibliography supplies a rich source of references to the basic literature.

Book Developments in Functional Equations and Related Topics

Download or read book Developments in Functional Equations and Related Topics written by Janusz Brzdęk and published by Springer. This book was released on 2017-08-14 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents current research on Ulam stability for functional equations and inequalities. Contributions from renowned scientists emphasize fundamental and new results, methods and techniques. Detailed examples are given to theories to further understanding at the graduate level for students in mathematics, physics, and engineering. Key topics covered in this book include: Quasi means Approximate isometries Functional equations in hypergroups Stability of functional equations Fischer-Muszély equation Haar meager sets and Haar null sets Dynamical systems Functional equations in probability theory Stochastic convex ordering Dhombres functional equation Nonstandard analysis and Ulam stability This book is dedicated in memory of Staniłsaw Marcin Ulam, who posed the fundamental problem concerning approximate homomorphisms of groups in 1940; which has provided the stimulus for studies in the stability of functional equations and inequalities.

Book A Course in Functional Analysis

Download or read book A Course in Functional Analysis written by John B Conway and published by Springer. This book was released on 2019-03-09 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS

Book Functional Analysis

    Book Details:
  • Author : Theo Bühler
  • Publisher : American Mathematical Soc.
  • Release : 2018-08-08
  • ISBN : 147044190X
  • Pages : 482 pages

Download or read book Functional Analysis written by Theo Bühler and published by American Mathematical Soc.. This book was released on 2018-08-08 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: It begins in Chapter 1 with an introduction to the necessary foundations, including the Arzelà–Ascoli theorem, elementary Hilbert space theory, and the Baire Category Theorem. Chapter 2 develops the three fundamental principles of functional analysis (uniform boundedness, open mapping theorem, Hahn–Banach theorem) and discusses reflexive spaces and the James space. Chapter 3 introduces the weak and weak topologies and includes the theorems of Banach–Alaoglu, Banach–Dieudonné, Eberlein–Šmulyan, Kre&ibreve;n–Milman, as well as an introduction to topological vector spaces and applications to ergodic theory. Chapter 4 is devoted to Fredholm theory. It includes an introduction to the dual operator and to compact operators, and it establishes the closed image theorem. Chapter 5 deals with the spectral theory of bounded linear operators. It introduces complex Banach and Hilbert spaces, the continuous functional calculus for self-adjoint and normal operators, the Gelfand spectrum, spectral measures, cyclic vectors, and the spectral theorem. Chapter 6 introduces unbounded operators and their duals. It establishes the closed image theorem in this setting and extends the functional calculus and spectral measure to unbounded self-adjoint operators on Hilbert spaces. Chapter 7 gives an introduction to strongly continuous semigroups and their infinitesimal generators. It includes foundational results about the dual semigroup and analytic semigroups, an exposition of measurable functions with values in a Banach space, and a discussion of solutions to the inhomogeneous equation and their regularity properties. The appendix establishes the equivalence of the Lemma of Zorn and the Axiom of Choice, and it contains a proof of Tychonoff's theorem. With 10 to 20 elaborate exercises at the end of each chapter, this book can be used as a text for a one-or-two-semester course on functional analysis for beginning graduate students. Prerequisites are first-year analysis and linear algebra, as well as some foundational material from the second-year courses on point set topology, complex analysis in one variable, and measure and integration.