EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Deposition Tank Corrosion Testing for Enhanced Chemical Cleaning Post Oxalic Acid Destruction

Download or read book Deposition Tank Corrosion Testing for Enhanced Chemical Cleaning Post Oxalic Acid Destruction written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy) for an inhibited waste to a range of 5 to 23.4 mpy, depending on sludge chemistry. F-area-based effluents were, in general, more corrosive. Effective corrosion control measures included evaporation, hydroxide additions and mixing with supernates containing a representative supernate chemistry (5 M hydroxide and 1.5 M nitrite). Corrosion rates with these measures were generally 0.2 mpy. The A537 carbon steel was found to be susceptible to pitting when the corrosion control measure involved mixing the ECC effluent with a supernate chemistry having minimal inhibitor concentrations (0.5 M hydroxide and 0.3 M nitrite). Corrosion rates in this case were near 1 mpy.

Book Treatment Tank Corrosion Studies for the Enhanced Chemical Cleaning Process

Download or read book Treatment Tank Corrosion Studies for the Enhanced Chemical Cleaning Process written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than in the PUREX/oxalic acid environment. (3) The corrosion rates for PUREX/8 wt.% oxalic acid were greater than or equal to those observed for the PUREX/2.5 wt.% oxalic acid. No localized corrosion was observed in the tests with the 8 wt.% oxalic acid. Testing with HM/8 wt.% oxalic acid simulant was not performed. Thus, a comparison with the results with 2.5 wt.% oxalic acid, where the corrosion rate was 88 mpy and localized corrosion was observed at 75 C, cannot be made. (4) The corrosion rates in 1 and 2.5 wt.% oxalic acid solutions were temperature dependent: (a) At 50 C, the corrosion rates ranged between 90 to 140 mpy over the 30 day test period. The corrosion rates were higher under stagnant conditions. (b) At 75 C, the initial corrosion rates were as high as 300 mpy during the first day of exposure. The corrosion rates increased with agitation. However, once the passive ferrous oxalate film formed, the corrosion rate decreased dramatically to less than 20 mpy over the 30 day test period. This rate was independent of agitation. (5) Electrochemical testing indicated that for oxalic acid/sludge simulant mixtures the cathodic reaction has transport controlled reaction kinetics. The literature suggests that the dissolution of the sludge produces a di-oxalatoferrate ion that is reduced at the cathodic sites. The cathodic reaction does not appear to involve hydrogen evolution. On the other hand, electrochemical tests demonstrated that the cathodic reaction for corrosion of carbon steel in pure oxalic acid involves hydrogen evolution. (6) Agitation of the oxalic acid/sludge simulant mixtures typically resulted in a higher corrosion rates for both acid concentrations. The transport of the ferrous ion away from the metal surface results in a less protective ferrous oxalate film. (7) A mercury containing species along with aluminum, silicon and iron oxides was observed on the interior of the pits formed in the HM/2.5 wt.% oxalic acid simulant at 75 C. The pitting rates in the agitated and non-agitated solution were 2 mils/day and 1 mil/day, respectively. A mechanism by which the mercury interacts with the aluminum and silicon oxides in this simulant to accelerate corrosion was proposed.

Book Corrosion Testing of Carbon Steel in Oxalic Acid Chemical Cleaning Solutions

Download or read book Corrosion Testing of Carbon Steel in Oxalic Acid Chemical Cleaning Solutions written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid has been selected for this purpose because it is an effective chelating agent for the solids and is not as corrosive as other acids. Electrochemical and immersion studies were conducted to investigate the corrosion behavior of carbon steel in simulated chemical cleaning environments. The effects of temperature, agitation, and the presence of sludge solids in the oxalic acid on the corrosion rate and the likelihood of hydrogen evolution were determined. The testing showed that the corrosion rates decreased significantly in the presence of the sludge solids. Corrosion rates increased with agitation, however, the changes were less noticeable.

Book ALTERNATIVE AND ENHANCED CHEMICAL CLEANING

Download or read book ALTERNATIVE AND ENHANCED CHEMICAL CLEANING written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the need to close High Level Waste storage tanks, chemical cleaning methods are needed for the removal of sludge heel materials remaining at the completion of mechanical tank cleaning efforts. Oxalic acid is considered the preferred cleaning reagent for heel dissolution of iron-based sludge. However, the large quantity of chemical reagents added to the tank farm from oxalic acid based cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acidic systems may be required for specific waste components that have low solubility in oxalic acid, and as a means to reduce oxalic acid usage in general. Electrochemical corrosion studies were conducted with 1 wt. % oxalic acid at mineral acid concentrations above and below the optimal conditions for this oxalic acid concentration. Testing environments included pure reagents, pure iron and aluminum phases, and sludge simulants. Mineral acid concentrations greater than 0.2 M and temperatures greater than 50 C result in unacceptably high corrosion rates. Results showed that manageable corrosion rates of carbon steel can be achieved at dilute mineral acid concentrations (i.e. less than 0.2 M) and low temperatures based on the contact times involved. Therefore, it is recommended that future dissolution and corrosion testing be performed with a dilute mineral acid and a less concentrated oxalic acid (e.g., 0.5 wt.%) that still promotes optimal dissolution. This recommendation requires the processing of greater water volumes than those for the baseline process during heel dissolution, but allows for minimization of oxalic acid additions. The following conclusions can be drawn from the test results: (1) In both nitric and sulfuric acid based reagents, the low temperature and dilute concentration environment resulted in carbon steel corrosion rates that were less than 150 mpy. These rates are manageable in that chemical cleaning processes could proceed for limited time without significant wall loss. Further optimization of the Alternative Enhance Chemical Cleaning (AECC) process should focus on testing in solutions of this dilute concentration and low temperature regime. (2) In general, for the nitric acid based reagent, the aluminum oxide phase environments resulted in higher corrosion rates than the iron oxide phase environments. (3) In general, for the sulfuric acid based reagent, the iron oxide phase environments resulted in higher corrosion rates than the aluminum oxide phase environments. (4) In general, for the nitric acid based reagent, the HM sludge simulant environments resulted in higher corrosion rates than the PUREX sludge simulant environments. This result agrees with the previous observation that the aluminum oxide phases are more aggressive than the iron oxide phase environments in the nitric acid reagent. (5) Pitting was more likely to occur in the sulfuric acid based reagents than in the nitric acid based reagents. (6) Pitting occurred only in the iron based pure oxide phases and the sludge simulants. No pitting was observed in the aluminum based pure oxide phases. (7) Pitting tended to occur more frequently in tests that involved the dilute mineral acid reagent. (8) Pitting was more severe at the higher temperature for a given mineral acid concentration. (9) Pitting was more severe at a higher mineral acid concentration for a given temperature. (10) Based on the combined results of the open circuit potential and cathodic polarization testing, there was a low propensity for hydrogen evolution in solutions where sludge has been dissolved.

Book SAVANNAH RIVER SITE TANK CLEANING

Download or read book SAVANNAH RIVER SITE TANK CLEANING written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed from the testing, there would be a significant increase in the CR. Specifically, the CR for an agitated 1-wt% pure oxalic acid solution at 45 or 75 C was about 4 to 10 times greater than those for a 1-wt% solution with sludge. For 8-wt% at 50 C, the effect was even larger. The lower CRs suggest that the cathodic reactions were altered by the sludge. For both the 1-wt% and 8-wt% solution, increasing the temperature did not result in an increased CR. Although the CR for a 1-wt% acid with sludge was considered to be non-temperature dependent, a stagnant solution with sludge resulted in a CR that was greater at 45 C than at 75 C, suggesting that the oxalate film formed at a higher temperature was better in mitigating corrosion. For both a 1 and an 8-wt% solution, agitation typically resulted in a higher CR. Overall, the testing showed that the general CR to the SRS carbon steel tanks from 1-wt% oxalic acid solution will remain bounded by those from an 8-wt% oxalic acid solution.

Book IN SITU MONITORING OF CORROSION DURING A LABORATORY SIMULATION OF OXALIC ACID CHEMICAL CLEANING

Download or read book IN SITU MONITORING OF CORROSION DURING A LABORATORY SIMULATION OF OXALIC ACID CHEMICAL CLEANING written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Savannah River Site (SRS) will disperse or dissolve precipitated metal oxides as part of radioactive waste tank closure operations. Previously SRS used oxalic acid to accomplish this task. To better understand the conditions of oxalic acid cleaning of the carbon steel waste tanks, laboratory simulations of the process were conducted to determine the corrosion rate of carbon steel and the generation of gases such as hydrogen and carbon dioxide. Open circuit potential measurements, linear polarization measurements, and coupon immersion tests were performed in-situ to determine the corrosion behavior of carbon steel during the demonstration. Vapor samples were analyzed continuously to determine the constituents of the phase. The combined results from these measurements indicated that in aerated environments, such as the tank, that the corrosion rates are manageable for short contact times and will facilitate prediction and control of the hydrogen generation rate during operations.

Book Alternative Chemical Cleaning Methods for High Level Waste Tanks

Download or read book Alternative Chemical Cleaning Methods for High Level Waste Tanks written by and published by . This book was released on 2015 with total page 79 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the "targeted" dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

Book ADVANCED OXIDATION

    Book Details:
  • Author :
  • Publisher :
  • Release : 2012
  • ISBN :
  • Pages : pages

Download or read book ADVANCED OXIDATION written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing dissolution equilibrium, and then decomposed to ≤ 100 Parts per Million (ppm) oxalate. Since AOP technology largely originated on using ultraviolet (UV) light as a primary catalyst, decomposition of the spent oxalic acid, well exposed to a medium pressure mercury vapor light was considered the benchmark. However, with multi-valent metals already contained in the feed, and maintenance of the UV light a concern; testing was conducted to evaluate the impact from removing the UV light. Using current AOP terminology, the test without the UV light would likely be considered an ozone based, dark, ferrioxalate type, decomposition process. Specifically, as part of the testing, the impacts from the following were investigated: (1) Importance of the UV light on the decomposition rates when decomposing 1 wt% spent oxalic acid; (2) Impact of increasing the oxalic acid strength from 1 to 2.5 wt% on the decomposition rates; and (3) For F-area testing, the advantage of increasing the spent oxalic acid flowrate from 40 L/min (liters/minute) to 50 L/min during decomposition of the 2.5 wt% spent oxalic acid. The results showed that removal of the UV light (from 1 wt% testing) slowed the decomposition rates in both the F & H testing. Specifically, for F-Area Strike 1, the time increased from about 6 hours to 8 hours. In H-Area, the impact was not as significant, with the time required for Strike 1 to be decomposed to less than 100 ppm increasing slightly, from 5.4 to 6.4 hours. For the spent 2.5 wt% oxalic acid decomposition tests (all) without the UV light, the F-area decompositions required approx. 10 to 13 hours, while the corresponding required H-Area decompositions times ranged from 10 to 21 hours. For the 2.5 wt% F-Area sludge, the increased availability of iron likely caused the increased decomposition rates compared to the 1 wt% oxalic acid based tests. In addition, for the F-testing, increasing the recirculation flow rates from 40 liter/minute to 50 liter/minute resulted in an increased decomposition rate, suggesting a better use of ozone.

Book Corrosion of Titanium

Download or read book Corrosion of Titanium written by J. D. Jackson and published by . This book was released on 1966 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Chemical Abstracts

Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2726 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Metals Abstracts

Download or read book Metals Abstracts written by and published by . This book was released on 1986 with total page 1264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Chlorine and Hydrogen Chloride

    Book Details:
  • Author : Assembly of Life Sciences (U.S.). Committee on Medical and Biologic Effects of Environmental Pollutants
  • Publisher :
  • Release : 1976
  • ISBN :
  • Pages : 294 pages

Download or read book Chlorine and Hydrogen Chloride written by Assembly of Life Sciences (U.S.). Committee on Medical and Biologic Effects of Environmental Pollutants and published by . This book was released on 1976 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1 INTRODUCTION. 2 SOURCERS OF CHLORINE AND HYDROGEN CHLORIDE. 3 CONSUMPTION OF CHLORINE AND HYDROGEN CHLORIDE. 4 ATMOSPHERIC CHEMISTRY OF CHLORINE COMPOUNDS. 5 EFFECTS OF CHLORINE AND HYDROGEN CHLORIDE ON MAN AND ANIMALS. 6 EFFECTS OF CHLORINE AND HYDROGEN CHLORIDE ON VEGETATION. 7 PROPERTY DAMAGE AND PUBLIC NUISANCE. 8 SAFETY IN USE AND HANDLING OF CHLORINE AND ANHYDROUS HYDROGEN CHLORIDE.

Book Copper and Bronze in Art

Download or read book Copper and Bronze in Art written by David A. Scott and published by Getty Publications. This book was released on 2002 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a review of 190 years of literature on copper and its alloys. It integrates information on pigments, corrosion and minerals, and discusses environmental conditions, conservation methods, ancient and historical technologies.

Book Engineering Materials and Processing Methods

Download or read book Engineering Materials and Processing Methods written by and published by . This book was released on 1933 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues for 1929- include section Contents noted (1929-1939 called Metallurgical abstracts; Jan. 1940- Sept. 1945 called Engineering digest; Oct. 1945- called Materials & methods digest) Annual indexes of the abstracts and digest were prepared 1929-1941; beginning in 1942, included in the complete index to the periodical.

Book PWR steam generator chemical cleaning

    Book Details:
  • Author : United States. Department of Energy. Division of Nuclear Power Development
  • Publisher :
  • Release : 1978
  • ISBN :
  • Pages : 354 pages

Download or read book PWR steam generator chemical cleaning written by United States. Department of Energy. Division of Nuclear Power Development and published by . This book was released on 1978 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Corrosion Abstracts

Download or read book Corrosion Abstracts written by and published by . This book was released on 1963 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: