Download or read book Information Science for Materials Discovery and Design written by Turab Lookman and published by Springer. This book was released on 2015-12-12 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a “fourth leg’’ to our toolkit to make the “Materials Genome'' a reality, the science of Materials Informatics.
Download or read book Model based Estimation of the Anisotropic Thermal Properties of Materials from Photothermal Deflection Spectroscopy Data Using Bayesian Inference written by Jason Randall Foley and published by . This book was released on 2007 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Active Subspaces written by Paul G. Constantine and published by SIAM. This book was released on 2015-03-17 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1976 with total page 984 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Dissertation Abstracts International written by and published by . This book was released on 2007 with total page 854 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Computational Psychiatry written by A. David Redish and published by MIT Press. This book was released on 2016-12-09 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Psychiatrists and neuroscientists discuss the potential of computational approaches to address problems in psychiatry including diagnosis, treatment, and integration with neurobiology. Modern psychiatry is at a crossroads, as it attempts to balance neurological analysis with psychological assessment. Computational neuroscience offers a new lens through which to view such thorny issues as diagnosis, treatment, and integration with neurobiology. In this volume, psychiatrists and theoretical and computational neuroscientists consider the potential of computational approaches to psychiatric issues. This unique collaboration yields surprising results, innovative synergies, and novel open questions. The contributors consider mechanisms of psychiatric disorders, the use of computation and imaging to model psychiatric disorders, ways that computation can inform psychiatric nosology, and specific applications of the computational approach. Contributors Susanne E. Ahmari, Huda Akil, Deanna M. Barch, Matthew Botvinick, Michael Breakspear, Cameron S. Carter, Matthew V. Chafee, Sophie Denève, Daniel Durstewitz, Michael B. First, Shelly B. Flagel, Michael J. Frank, Karl J. Friston, Joshua A. Gordon, Katia M. Harlé, Crane Huang, Quentin J. M. Huys, Peter W. Kalivas, John H. Krystal, Zeb Kurth-Nelson, Angus W. MacDonald III, Tiago V. Maia, Robert C. Malenka, Sanjay J. Mathew, Christoph Mathys, P. Read Montague, Rosalyn Moran, Theoden I. Netoff, Yael Niv, John P. O'Doherty, Wolfgang M. Pauli, Martin P. Paulus, Frederike Petzschner, Daniel S. Pine, A. David Redish, Kerry Ressler, Katharina Schmack, Jordan W. Smoller, Klaas Enno Stephan, Anita Thapar, Heike Tost, Nelson Totah, Jennifer L. Zick
Download or read book Heuristics Probability and Casuality written by Rina Dechter and published by . This book was released on 2010 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of Artificial Intelligence has changed a great deal since the 80s, and arguably no one has played a larger role in that change than Judea Pearl. Judea Pearl's work made probability the prevailing language of modern AI and, perhaps more significantly, it placed the elaboration of crisp and meaningful models, and of effective computational mechanisms, at the center of AI research. This book is a collection of articles in honor of Judea Pearl, written by close colleagues and former students. Its three main parts, heuristics, probabilistic reasoning, and causality, correspond to the titles of the three ground-breaking books authored by Judea, and are followed by a section of short reminiscences. In this volume, leading authors look at the state of the art in the fields of heuristic, probabilistic, and causal reasoning, in light of Judea's seminal contributors. The authors list include Blai Bonet, Eric Hansen, Robert Holte, Jonathan Schaeffer, Ariel Felner, Richard Korf, Austin Parker, Dana Nau, V. S. Subrahmanian, Hector Geffner, Ira Pohl, Adnan Darwiche, Thomas Dean, Rina Dechter, Bozhena Bidyuk, Robert Matescu, Emma Rollon, Michael I. Jordan, Michael Kearns, Daphne Koller, Brian Milch, Stuart Russell, Azaria Paz, David Poole, Ingrid Zukerman, Carlos Brito, Philip Dawid, Felix Elwert, Christopher Winship, Michael Gelfond, Nelson Rushton, Moises Goldszmidt, Sander Greenland, Joseph Y. Halpern, Christopher Hitchcock, David Heckerman, Ross Shachter, Vladimir Lifschitz, Thomas Richardson, James Robins, Yoav Shoham, Peter Spirtes, Clark Glymour, Richard Scheines, Robert Tillman, Wolfgang Spohn, Jian Tian, Ilya Shpitser, Nils Nilsson, Edward T. Purcell, and David Spiegelhalter.
Download or read book Bayesian Spectrum Analysis and Parameter Estimation written by G. Larry Bretthorst and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is essentially an extensive revision of my Ph.D. dissertation, [1J. It 1S primarily a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis; consequently, we have included a great deal of introductory and tutorial material. Any person with the equivalent of the mathematics background required for the graduate level study of physics should be able to follow the material contained in this book, though not without eIfort. From the time the dissertation was written until now (approximately one year) our understanding of the parameter estimation problem has changed extensively. We have tried to incorporate what we have learned into this book. I am indebted to a number of people who have aided me in preparing this docu ment: Dr. C. Ray Smith, Steve Finney, Juana Sunchez, Matthew Self, and Dr. Pat Gibbons who acted as readers and editors. In addition, I must extend my deepest thanks to Dr. Joseph Ackerman for his support during the time this manuscript was being prepared.
Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.
Download or read book Simulation of Field Water Use and Crop Yield written by R. A. Feddes and published by Halsted Press. This book was released on 1978-01-01 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of field water use: basics of water flow i unsaturated soils;water uptake by plants roots;numerical approximation of flow in soil-root systems. Theory of crop production:mathematical description of growts;water and actual production;calculation of potential production. Theprogram:program for field water use, SWATR;program for crop production,CROPR;execution of SWATR; execution of CROPR.
Download or read book Active Inference written by Thomas Parr and published by MIT Press. This book was released on 2022-03-29 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines. Active inference is a way of understanding sentient behavior—a theory that characterizes perception, planning, and action in terms of probabilistic inference. Developed by theoretical neuroscientist Karl Friston over years of groundbreaking research, active inference provides an integrated perspective on brain, cognition, and behavior that is increasingly used across multiple disciplines including neuroscience, psychology, and philosophy. Active inference puts the action into perception. This book offers the first comprehensive treatment of active inference, covering theory, applications, and cognitive domains. Active inference is a “first principles” approach to understanding behavior and the brain, framed in terms of a single imperative to minimize free energy. The book emphasizes the implications of the free energy principle for understanding how the brain works. It first introduces active inference both conceptually and formally, contextualizing it within current theories of cognition. It then provides specific examples of computational models that use active inference to explain such cognitive phenomena as perception, attention, memory, and planning.
Download or read book Red Tape Holds Up New Bridge and More Flubs from the Nation s Press written by Gloria Cooper and published by TarcherPerigee. This book was released on 1987 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring selections from The Lower case, the best-read page of the Columbia Journalism Review, Red Tape Holds Up New Bridge gives the Fourth Estate the once-over and comes up with non-stop fun.
Download or read book Optimal Design of Experiments written by Peter Goos and published by John Wiley & Sons. This book was released on 2011-06-28 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.
Download or read book Princeton Companion to Applied Mathematics written by Nicholas J. Higham and published by Princeton University Press. This book was released on 2015-09-09 with total page 1014 pages. Available in PDF, EPUB and Kindle. Book excerpt: The must-have compendium on applied mathematics This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index
Download or read book The Zoological Record written by and published by . This book was released on 1870 with total page 1106 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Index Medicus written by and published by . This book was released on 2004 with total page 1938 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.
Download or read book Dynamical Modelling Estimation in Wastewater Treatment Processes written by D. Dochain and published by IWA Publishing. This book was released on 2001-12-01 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Environmental quality is becoming an increasing concern in our society. In that context, waste and wastewater treatment, and more specifically biological wastewater treatment processes play an important role. In this book, we concentrate on the mathematical modelling of these processes. The main purpose is to provide the increasing number of professionals who are using models to design, optimise and control wastewater treatment processes with the necessary background for their activities of model building, selection and calibration. The book deals specifically with dynamic models because they allow us to describe the behaviour of treatment plants under the highly dynamic conditions that we want them to operate (e.g. Sequencing Batch Reactors) or we have to operate them (e.g. storm conditions, spills). Further extension is provided to new reactor systems for which partial differential equation descriptions are necessary to account for their distributed parameter nature (e.g. settlers, fixed bed reactors). The model building exercise is introduced as a step-wise activity that, in this book, starts from mass balancing principles. In many cases, different hypotheses and their corresponding models can be proposed for a particular process. It is therefore essential to be able to select from these candidate models in an objective manner. To this end, structure characterisation methods are introduced. Important sections of the book deal with the collection of high quality data using optimal experimental design, parameter estimation techniques for calibration and the on-line use of models in state and parameter estimators. Contents Dynamical Modelling Dynamical Mass Balance Model Building and Analysis Structure Characterisation (SC) Structural Identifiability Practical Identifiability and Optimal Experiment Design for Parameter Estimation (OED/PE) Estimation of Model Parameters Recursive State and Parameter Estimation Glossary Nomenclature