EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Defining and Predicting Species environment Relationships

Download or read book Defining and Predicting Species environment Relationships written by Cordelia Holly Moore and published by . This book was released on 2008 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: [Truncated abstract] The aim of this research was to define key species-environment relationships to better understand the spatial ecology of demersal fish. To help understand these relationships a combination of multivariate analyses, landscape analysis and species distribution models were employed. Of particular interest was to establish the scale at which these species respond to their environment. With recent high resolution surveying and mapping of the benthos in five of Victoria's Marine National Parks (MNPs), full coverage bathymetry, terrain data and accurate predicted benthic habitat maps were available for each of these parks. This information proved invaluable to this research, providing detailed (1:25,000) benthic environmental data, which facilitated the development and implementation of a very targeted and robust sampling strategy for the demersal fish at Cape Howe MNP. The sampling strategy was designed to provide good spatial coverage of the park and to represent the park's dominant substrate types and benthic communities, whilst also satisfying the assumptions of the statistical and spatial analyses applied. The fish assemblage data was collected using baited remote underwater stereo-video systems (stereo- BRUVS), with a total of 237 one-hour drops collected. Analysis of the video footage identified 77 species belonging to 40 families with a total of 14,449 individual fish recorded. ... This research revealed that the statistical modelling techniques employed provided an accurate means for predicting species distributions. These predicted distributions will allow for more effective management of these species by providing a robust and spatially explicit map of their current distribution enabling the identification and prediction of future changes in these species distributions. This research demonstrated the importance of the benthic environment on the spatial distribution of demersal fish. The results revealed that different species responded to different scales of investigation and that all scales must be ix considered to establish the factors fish are responding to and the strength and nature of this response. Having individual, continuous and spatially explicit environmental measures provided a significant advantage over traditional measures that group environmental and biological factors into 'habitat type'. It enabled better identification of individual factors, or correlates, driving the distribution of demersal fish. The environmental and biological measures were found to be of ecological relevance to the species and the scale of investigation and offered a more informative description of the distributions of the species examined. The use of species distribution modelling provided a robust means for the characterisation of the nature and strength of these relationships. In addition, it enabled species distributions to be predicted accurately across unsampled locations. Outcomes of the project include a greater understanding of how the benthic environment influences the distribution of demersal fish and demonstrates a suite of robust and useful marine species distribution tools that may be used by researcher and managers to understand, monitor, manage and predict marine species distributions.

Book Predicting Species Occurrences

Download or read book Predicting Species Occurrences written by J. Michael Scott and published by Island Press. This book was released on 2002-02 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt: Predictions about where different species are, where they are not, and how they move across a landscape or respond to human activities -- if timber is harvested, for instance, or stream flow altered -- are important aspects of the work of wildlife biologists, land managers, and the agencies and policymakers that govern natural resources. Despite the increased use and importance of model predictions, these predictions are seldom tested and have unknown levels of accuracy.Predicting Species Occurrences addresses those concerns, highlighting for managers and researchers the strengths and weaknesses of current approaches, as well as the magnitude of the research required to improve or test predictions of currently used models. The book is an outgrowth of an international symposium held in October 1999 that brought together scientists and researchers at the forefront of efforts to process information about species at different spatial and temporal scales. It is a comprehensive reference that offers an exhaustive treatment of the subject, with 65 chapters by leading experts from around the world that: review the history of the theory and practice of modeling and present a standard terminology examine temporal and spatial scales in terms of their influence on patterns and processes of species distribution offer detailed discussions of state-of-the-art modeling tools and descriptions of methods for assessing model accuracy discuss how to predict species presence and abundance present examples of how spatially explicit data on demographics can provide important information for managers An introductory chapter by Michael A. Huston examines the ecological context in which predictions of species occurrences are made, and a concluding chapter by John A. Wiens offers an insightful review and synthesis of the topics examined along with guidance for future directions and cautions regarding misuse of models. Other contributors include Michael P. Austin, Barry R. Noon, Alan H. Fielding, Michael Goodchild, Brian A. Maurer, John T. Rotenberry, Paul Angermeier, Pierre R. Vernier, and more than a hundred others.Predicting Species Occurrences offers important new information about many of the topics raised in the seminal volume Wildlife 2000 (University of Wisconsin Press, 1986) and will be the standard reference on this subject for years to come. Its state-of-the-art assessment will play a key role in guiding the continued development and application of tools for making accurate predictions and is an indispensable volume for anyone engaged in species management or conservation.

Book Predictive Species and Habitat Modeling in Landscape Ecology

Download or read book Predictive Species and Habitat Modeling in Landscape Ecology written by C. Ashton Drew and published by Springer Science & Business Media. This book was released on 2010-11-25 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most projects in Landscape Ecology, at some point, define a species-habitat association. These models are inherently spatial, dealing with landscapes and their configurations. Whether coding behavioral rules for dispersal of simulated organisms through simulated landscapes, or designing the sampling extent of field surveys and experiments in real landscapes, landscape ecologists must make assumptions about how organisms experience and utilize the landscape. These convenient working postulates allow modelers to project the model in time and space, yet rarely are they explicitly considered. The early years of landscape ecology necessarily focused on the evolution of effective data sources, metrics, and statistical approaches that could truly capture the spatial and temporal patterns and processes of interest. Now that these tools are well established, we reflect on the ecological theories that underpin the assumptions commonly made during species distribution modeling and mapping. This is crucial for applying models to questions of global sustainability. Due to the inherent use of GIS for much of this kind of research, and as several authors’ research involves the production of multicolored map figures, there would be an 8-page color insert. Additional color figures could be made available through a digital archive, or by cost contributions of the chapter authors. Where applicable, would be relevant chapters’ GIS data and model code available through a digital archive. The practice of data and code sharing is becoming standard in GIS studies, is an inherent method of this book, and will serve to add additional research value to the book for both academic and practitioner audiences.

Book How to Find the One that Got Away

Download or read book How to Find the One that Got Away written by Brenton Sean Chatfield and published by . This book was released on 2008 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: [Truncated abstract] Knowing where species are and understanding why is paramount for developing relevant and sustainable conservation and resource management strategies. The need for this information is becoming urgent as fishing activity, resource extraction and the impacts of coastal developments continue to put marine resources under increasing pressure. As logistical and financial constraints can restrict our ability to collect data in the marine environment, the ability to predict distributions based on known associations with different environmental variables would enhance our capacity to manage these resources. Before attempting to predict the distribution of species and groups of species, the underlying species-environment relationships must be examined to determine whether associations between species and the environment can: (i) be identified, (ii) be used to develop models that can accurately predict distributions, and (iii) are general enough to allow accurate predictions beyond the sampled area. Most studies to date have compared the composition of fish assemblages between sites to determine how different environmental variables influence distribution. While widely applied, these methods do not consider how individual species respond to multiple environmental gradients and they lack the ability to predict distributions across different combinations of variables along those gradients. This lack of prediction also limits our capacity to assess what marine biodiversity is presently threatened by global, regional, and local human pressures on marine ecosystems. '...' Thus, summarising and modelling species data at higher levels would result in models with poorer predictive accuracy and a loss of ecological information. The generality of the species-environment relationships defined by the models were assessed by evaluating the transferability of models between different areas. Models developed from data collected over a wider geographic extent could more accurately predict the distribution of species across a smaller spatial extent than vice versa. This indicated that while general theories of the ecology of temperate demersal fish can be defined, the actual patterns of distribution may vary from site to site, suggesting caution when using predictions beyond the sampled area for management purposes. Overall, species distribution modelling identified how different species and groups of species responded to the combined influence of multiple environmental gradients and was able to accurately predict distributions based on the defined associations. Their application has led to a greater understanding of the species environment relationships and will help to identify those areas that may be important for conservation. Their predictive ability will allow general predictions of distribution of fish species across unsurveyed areas and provides the ability to assess the potential impact from implementing different policy and management strategies.

Book The Species Area Relationship

    Book Details:
  • Author : Thomas J. Matthews
  • Publisher : Cambridge University Press
  • Release : 2021-03-18
  • ISBN : 1108477070
  • Pages : 503 pages

Download or read book The Species Area Relationship written by Thomas J. Matthews and published by Cambridge University Press. This book was released on 2021-03-18 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive synthesis of a fundamental phenomenon, the species-area relationship, addressing theory, evidence and application.

Book Invasion Dynamics

    Book Details:
  • Author : Cang Hui
  • Publisher : Oxford University Press
  • Release : 2017-01-26
  • ISBN : 0191062537
  • Pages : 607 pages

Download or read book Invasion Dynamics written by Cang Hui and published by Oxford University Press. This book was released on 2017-01-26 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: Humans have moved organisms around the world for centuries but it is only relatively recently that invasion ecology has grown into a mainstream research field. This book examines both the spread and impact dynamics of invasive species, placing the science of invasion biology on a new, more rigorous, theoretical footing, and proposing a concept of adaptive networks as the foundation for future research. Biological invasions are considered not as simple actions of invaders and reactions of invaded ecosystems, but as co-evolving complex adaptive systems with emergent features of network complexity and invasibility. Invasion Dynamics focuses on the ecology of invasive species and their impacts in recipient social-ecological systems. It discusses not only key advances and challenges within the traditional domain of invasion ecology, but introduces approaches, concepts, and insights from many other disciplines such as complexity science, systems science, and ecology more broadly. It will be of great value to invasion biologists analyzing spread and/or impact dynamics as well as other ecologists interested in spread processes or habitat management.

Book Invasive Species

    Book Details:
  • Author : Andrew P. Robinson
  • Publisher : Cambridge University Press
  • Release : 2017-06-08
  • ISBN : 052176596X
  • Pages : 427 pages

Download or read book Invasive Species written by Andrew P. Robinson and published by Cambridge University Press. This book was released on 2017-06-08 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the latest risk-based techniques to protect national interests from invasive pests and pathogens before, at and within national borders.

Book Joint Species Distribution Modelling

Download or read book Joint Species Distribution Modelling written by Otso Ovaskainen and published by Cambridge University Press. This book was released on 2020-06-11 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive account of joint species distribution modelling, covering statistical analyses in light of modern community ecology theory.

Book Describing Species environment Relations for Macrobenthic and Microphytobenthic Community Structure Using Constrained Ordination and Predicting Environmental Variables from Species Composition

Download or read book Describing Species environment Relations for Macrobenthic and Microphytobenthic Community Structure Using Constrained Ordination and Predicting Environmental Variables from Species Composition written by Angeliki Evgenidou and published by . This book was released on 2012 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mapping Species Distributions

Download or read book Mapping Species Distributions written by Janet Franklin and published by Cambridge University Press. This book was released on 2010-01-07 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maps of species' distributions or habitat suitability are required for many aspects of environmental research, resource management and conservation planning. These include biodiversity assessment, reserve design, habitat management and restoration, species and habitat conservation plans and predicting the effects of environmental change on species and ecosystems. The proliferation of methods and uncertainty regarding their effectiveness can be daunting to researchers, resource managers and conservation planners alike. Franklin summarises the methods used in species distribution modeling (also called niche modeling) and presents a framework for spatial prediction of species distributions based on the attributes (space, time, scale) of the data and questions being asked. The framework links theoretical ecological models of species distributions to spatial data on species and environment, and statistical models used for spatial prediction. Providing practical guidelines to students, researchers and practitioners in a broad range of environmental sciences including ecology, geography, conservation biology, and natural resources management.

Book Handbook of Environmental and Ecological Statistics

Download or read book Handbook of Environmental and Ecological Statistics written by Alan E. Gelfand and published by CRC Press. This book was released on 2019-01-15 with total page 679 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook focuses on the enormous literature applying statistical methodology and modelling to environmental and ecological processes. The 21st century statistics community has become increasingly interdisciplinary, bringing a large collection of modern tools to all areas of application in environmental processes. In addition, the environmental community has substantially increased its scope of data collection including observational data, satellite-derived data, and computer model output. The resultant impact in this latter community has been substantial; no longer are simple regression and analysis of variance methods adequate. The contribution of this handbook is to assemble a state-of-the-art view of this interface. Features: An internationally regarded editorial team. A distinguished collection of contributors. A thoroughly contemporary treatment of a substantial interdisciplinary interface. Written to engage both statisticians as well as quantitative environmental researchers. 34 chapters covering methodology, ecological processes, environmental exposure, and statistical methods in climate science.

Book Habitat Suitability and Distribution Models

Download or read book Habitat Suitability and Distribution Models written by Antoine Guisan and published by Cambridge University Press. This book was released on 2017-09-14 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the key stages of niche-based habitat suitability model building, evaluation and prediction required for understanding and predicting future patterns of species and biodiversity. Beginning with the main theory behind ecological niches and species distributions, the book proceeds through all major steps of model building, from conceptualization and model training to model evaluation and spatio-temporal predictions. Extensive examples using R support graduate students and researchers in quantifying ecological niches and predicting species distributions with their own data, and help to address key environmental and conservation problems. Reflecting this highly active field of research, the book incorporates the latest developments from informatics and statistics, as well as using data from remote sources such as satellite imagery. A website at www.unil.ch/hsdm contains the codes and supporting material required to run the examples and teach courses.

Book Spatially Explicit Distribution Models for Predicting Species Occurrences  microform

Download or read book Spatially Explicit Distribution Models for Predicting Species Occurrences microform written by Pilar Hernandez and published by Library and Archives Canada = Bibliothèque et Archives Canada. This book was released on 2004 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: Species distribution modeling is an essential tool for conservation planning. These models utilize the species-environment relationship to formulate a spatial depiction of its distribution pattern. Often these models are developed aspatially. That is they do not consider the spatial context of the species occurrence. Thereby, ignoring spatial components that contribute to the species distribution pattern such as species endogenous processes and the species dependence on its spatially structured physical environment. Species distribution modeling methods have been developed that explicitly account for these spatial processes. Spatially explicit modeling methods are reviewed and the importance of carefully considering interactions between the ecological, data and statistical components of the model is highlighted. A comparative evaluation of five spatially explicit methods and an aspatial method was performed to investigate their relative abilities to accurately predict three songbird occurrences. Results were mixed and dependent on characteristics of the species ecology and model data.

Book Predictability and Constraints on the Structure of Ecological Communities in the Context of Climate Change

Download or read book Predictability and Constraints on the Structure of Ecological Communities in the Context of Climate Change written by Allison K. Barner and published by . This book was released on 2016 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ecologists must increasingly balance the need for accurate predictions about how ecosystems will be affected by climate change, against the fact that making such predictions at the ecosystem-level may be infeasible. Although information about responses of individual species to a changing environment is increasing, scaling such information to the community level is challenging. To date, predicting responses of ecological communities to climate change is constrained by limited theoretical and empirical knowledge about the response of communities and ecosystems to change. My dissertation addresses several knowledge gaps in our understanding of community structure under climate change. This research draws from a rich experimental tradition in the species-diverse model ecosystem of the US Pacific Northwest rocky intertidal to test ecological theory. In Chapter 2, I assessed whether the response of multiple species of coralline algae to global change could be predicted from basic first principles of chemistry, physiology, and ecology. Given the rate of global change, and the time-consuming process of experimentally determining species responses to climate change, I hypothesized that species can be grouped using existing theory, either by their evolutionary relatedness or by their ecological traits, such that climate responses are similar within a group. Such a scheme would greatly reduce the number of experiments needed to characterize species climate vulnerability, requiring the characterization of the response of groups of species to climate change, rather than individual species. Using a suite of five co-occurring species of intertidal articulated coralline algae (Corallina vancouveriensis, Corallina officinalis, Bossiella plumosa, Bossiella orbiginiana, and Calliarthron tuberculosum), I applied this framework to generate ten mutually exclusive hypotheses that could explain organismal response to ocean acidification, a consequence of global climate change that threatens marine calcifying species. I found that all species had similar responses to ocean acidification, and that responses were generally predicted by the body size of the individual. Despite the power that such a framework provides in understanding group-level response to climate change, predicting community-level response requires knowledge of how organisms affect one another. In Chapter 3, I quantified species interactions in a series of removal experiments to estimate the reciprocal effects between a canopy-forming intertidal kelp (Saccharina sessilis) and a suite of understory species that persist beneath the kelp canopy. This experiment was replicated in different oceanographic conditions across a large latitudinal gradient, as a step towards understanding how interactions might change with climate change. However, the experiment demonstrated that interactions between the canopy and understory were consistent among different environmental conditions. Furthermore, the strongest effect was that of understory species, particularly articulated coralline turf algae, on the canopy species. The coralline turf algae both facilitated the recruitment of the canopy species and buffered the canopy from abiotic stress during its adult life stage. Combining experimental results and observational surveys, a hypothesized interaction network for these species was constructed, highlighting the importance of direct and indirect species interactions in promoting species coexistence. A long-standing controversy in ecology is whether or not species interactions can be inferred from observational data, as opposed to from experimental tests. Although the rocky intertidal ecosystem is unique for its ease of experimental manipulation, quantifying species interactions experimentally is often difficult or impossible. As an alternative, many have turned to statistical methods to estimate species interactions from observational data, namely, from patterns in species pairwise co-occurrences. In Chapter 4, I examined these co-occurrence methods and their potential relationship to experimentally measured species interactions. I first used a suite of different co-occurrence methods to generate a set of predicted species interactions of macrophytes and invertebrates from observational surveys conducted in the rocky intertidal zone of Oregon. I then compared the predicted species interactions to the same pairwise species interactions determined experimentally and assembled from the literature. Overall, of the seven methods tested, each generated a different set of predicted species interactions from the same data, and all methods predicted interactions that did not match those in the experimental database. Thus, predicting species interactions from patterns in occurrence remains elusive. Importantly, much work remains to be done to understand the link between species co-occurrences and their actual interactions with one another on the landscape. A key limiting frontier in climate change ecology is determining the influence of species interactions on species distributions across the landscape, and the sensitivity of such interactions to changes in climate. Finally, in Chapter 5, I used theory from the published literature and knowledge from my previous chapters to make predictions the recovery of low rocky intertidal communities after a disturbance. The process of community development after disturbance has been studied in many ways, from the successional studies of the early 1900s, to modern community assembly theory. In recent years, a focus on the unpredictability of community assembly has emerged, paying particular attention to the role of historical contingency, or priority effects, in determining the recovery trajectory of a community. Priority effects occur when the arrival of a species after a disturbance inalterably changes the composition of the developing community, driving the assembly of widely different communities at a small spatial scale. I conducted a community assembly experiment in three different low intertidal zone community "types", each characterized by different dominant macrophyte species (Saccharina sessilis, Phyllospadix spp., and algal "turfs"). Replicating this experiment at six sites along the Oregon coast, I found that both regional and local dynamics constrain the recovery of communities after disturbance. Half of the time, the community returned to the state of the nearby community type. The remaining communities were influenced by priority effects that could be predicted based on 1) regional dynamics favoring some species over others, or 2) the timing of arrival of important facilitating species. Overall, understanding the dynamic relationship between the persistence of diverse communities and a changing environment remains one of the challenges of our time. My dissertation highlights some of the challenges in predicting the future composition of communities under climate change, but also provides some ways forward. Integration of experimental, theoretical, and observational studies builds the scaffolding of prediction, whereby understanding the constraints on species physiology, the interactions among species, and community assembly can help frame the context in which predictions are made.

Book Bryology for the Twenty first Century

Download or read book Bryology for the Twenty first Century written by Jeffrey W. Bates and published by Routledge. This book was released on 2018-02-02 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: A compilation of state of the art papers on key topics in bryology from invited speakers at the Centenary Symposium, University of Glasgow, 57 August 1996.

Book The Theory of Ecological Communities  MPB 57

Download or read book The Theory of Ecological Communities MPB 57 written by Mark Vellend and published by Princeton University Press. This book was released on 2020-09-15 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: A plethora of different theories, models, and concepts make up the field of community ecology. Amid this vast body of work, is it possible to build one general theory of ecological communities? What other scientific areas might serve as a guiding framework? As it turns out, the core focus of community ecology—understanding patterns of diversity and composition of biological variants across space and time—is shared by evolutionary biology and its very coherent conceptual framework, population genetics theory. The Theory of Ecological Communities takes this as a starting point to pull together community ecology's various perspectives into a more unified whole. Mark Vellend builds a theory of ecological communities based on four overarching processes: selection among species, drift, dispersal, and speciation. These are analogues of the four central processes in population genetics theory—selection within species, drift, gene flow, and mutation—and together they subsume almost all of the many dozens of more specific models built to describe the dynamics of communities of interacting species. The result is a theory that allows the effects of many low-level processes, such as competition, facilitation, predation, disturbance, stress, succession, colonization, and local extinction to be understood as the underpinnings of high-level processes with widely applicable consequences for ecological communities. Reframing the numerous existing ideas in community ecology, The Theory of Ecological Communities provides a new way for thinking about biological composition and diversity.

Book Hierarchical Modeling and Inference in Ecology

Download or read book Hierarchical Modeling and Inference in Ecology written by J. Andrew Royle and published by Elsevier. This book was released on 2008-10-15 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods.This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures.The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution* abundance models based on many sampling protocols, including distance sampling* capture-recapture models with individual effects* spatial capture-recapture models based on camera trapping and related methods* population and metapopulation dynamic models* models of biodiversity, community structure and dynamics - Wide variety of examples involving many taxa (birds, amphibians, mammals, insects, plants) - Development of classical, likelihood-based procedures for inference, as well as Bayesian methods of analysis - Detailed explanations describing the implementation of hierarchical models using freely available software such as R and WinBUGS - Computing support in technical appendices in an online companion web site