Download or read book Deep Statistical Comparison for Meta heuristic Stochastic Optimization Algorithms written by Tome Eftimov and published by Springer Nature. This book was released on 2022-06-11 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios. The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts: Part I: Introduction to optimization, benchmarking, and statistical analysis – Chapters 2-4. Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms – Chapters 5-7. Part III: Implementation and application of Deep Statistical Comparison – Chapter 8.
Download or read book Machine Learning Optimization and Big Data written by Giuseppe Nicosia and published by Springer. This book was released on 2017-12-19 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the post-conference proceedings of the Third International Workshop on Machine Learning, Optimization, and Big Data, MOD 2017, held in Volterra, Italy, in September 2017. The 50 full papers presented were carefully reviewed and selected from 126 submissions. The papers cover topics in the field of machine learning, artificial intelligence, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods and applications.
Download or read book Bioinspired Optimization Methods and Their Applications written by Peter Korošec and published by Springer. This book was released on 2018-05-11 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed revised selected papers of the 10th International Conference on Bioinspired Optimization Models and Their Applications, BIOMA 2018, held in Paris, France, in May 2018. The 27 revised full papers were selected from 53 submissions and present papers in all aspects of bioinspired optimization research such as new algorithmic developments, high-impact applications, new research challenges, theoretical contributions, implementation issues, and experimental studies.
Download or read book Evolutionary Multi Criterion Optimization written by Hisao Ishibuchi and published by Springer Nature. This book was released on 2021-03-24 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 11th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2021 held in Shenzhen, China, in March 2021. The 47 full papers and 14 short papers were carefully reviewed and selected from 120 submissions. The papers are divided into the following topical sections: theory; algorithms; dynamic multi-objective optimization; constrained multi-objective optimization; multi-modal optimization; many-objective optimization; performance evaluations and empirical studies; EMO and machine learning; surrogate modeling and expensive optimization; MCDM and interactive EMO; and applications.
Download or read book Modelling and Development of Intelligent Systems written by Dana Simian and published by Springer Nature. This book was released on 2021-02-12 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the refereed proceedings of the 7th International Conference on Modelling and Development of Intelligent Systems, MDIS 2020, held in Sibiu, Romania, in October 2020. Due to the COVID-19 pandemic the conference was held online. The 25 revised full papers presented in the volume were carefully reviewed and selected from 57 submissions. The papers are organized in topical sections on evolutionary computing; intelligent systems for decision support; machine learning; mathematical models for development of intelligent systems; modelling and optimization of dynamic systems; ontology engineering.
Download or read book Heuristics for Optimization and Learning written by Farouk Yalaoui and published by Springer Nature. This book was released on 2020-12-15 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a new contribution aiming to give some last research findings in the field of optimization and computing. This work is in the same field target than our two previous books published: “Recent Developments in Metaheuristics” and “Metaheuristics for Production Systems”, books in Springer Series in Operations Research/Computer Science Interfaces. The challenge with this work is to gather the main contribution in three fields, optimization technique for production decision, general development for optimization and computing method and wider spread applications. The number of researches dealing with decision maker tool and optimization method grows very quickly these last years and in a large number of fields. We may be able to read nice and worthy works from research developed in chemical, mechanical, computing, automotive and many other fields.
Download or read book Computational Intelligence Applied to Inverse Problems in Radiative Transfer written by Antônio José da Silva Neto and published by Springer Nature. This book was released on 2024-01-13 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a careful selection of studies in optimization techniques based on artificial intelligence, applied to inverse problems in radiative transfer. In this book, the reader will find an in-depth exploration of heuristic optimization methods, each meticulously described and accompanied by historical context and natural process analogies. From simulated annealing and genetic algorithms to artificial neural networks, ant colony optimization, and particle swarms, this volume presents a wide range of heuristic methods. Additional approaches such as generalized extreme optimization, particle collision, differential evolution, Luus-Jaakola, and firefly algorithms are also discussed, providing a rich repertoire of tools for tackling challenging problems. While the applications showcased primarily focus on radiative transfer, their potential extends to various domains, particularly nonlinear and large-scale problems where traditional deterministic methods fall short. With clear and comprehensive presentations, this book empowers readers to adapt each method to their specific needs. Furthermore, practical examples of classical optimization problems and application suggestions are included to enhance your understanding. This book is suitable to any researcher or practitioner whose interests lie on optimization techniques based in artificial intelligence and bio-inspired algorithms, in fields like Applied Mathematics, Engineering, Computing, and cross-disciplinary areas.
Download or read book Internet of Things Smart Spaces and Next Generation Networks and Systems written by Yevgeni Koucheryavy and published by Springer Nature. This book was released on 2023-04-19 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the joint refereed proceedings of the 22nd International Conference on Internet of Things, Smart Spaces, and Next Generation Networks and Systems, NEW2AN 2022, held in Tashkent, Uzbekistan, in December 2022. The 58 regular papers presented in this volume were carefully reviewed and selected from 282 submissions. The papers of NEW2AN address various aspects of next-generation data networks, while special attention is given to advanced wireless networking and applications. In particular, the authors have demonstrated novel and innovative approaches to performance and efficiency analysis of 5G and beyond systems, employed game-theoretical formulations, advanced queuing theory, and machine learning. It is also worth mentioning the rich coverage of the Internet of Things, optics, signal processing, as well as digital economy and business aspects.
Download or read book Applications of Evolutionary Computation written by João Correia and published by Springer Nature. This book was released on 2023-04-08 with total page 821 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 25th International Conference on Applications of Evolutionary Computation, EvoApplications 2023, held as part of Evo*2023, in April 2023, co-located with the Evo*2023 events EuroGP, EvoCOP, and EvoMUSART. The EuroGP focused on the technique of genetic programming, EvoCOP targeted evolutionary computation in combinatorial optimization, and EvoMUSART was dedicated to evolved and bio-inspired music, sound, art, and design. The EvoApplications 2023 presents papers on the different areas: Analysis of Evolutionary Computation Methods: Theory, Empirics, and Real-World Applications, Applications of Bio-inspired Techniques on Social Networks, Evolutionary Computation in Edge, Fog, and Cloud Computing, Evolutionary Computation in Image Analysis, Signal Processing, and Pattern Recognition and others.
Download or read book Metaheuristics for Multiobjective Optimisation written by Xavier Gandibleux and published by Springer Science & Business Media. This book was released on 2012-08-27 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: The success of metaheuristics on hard single-objective optimization problems is well recognized today. However, many real-life problems require taking into account several conflicting points of view corresponding to multiple objectives. The use of metaheuristic optimization techniques for multi-objective problems is the subject of this volume. The book includes selected surveys, tutorials and state-of-the-art research papers in this field, which were first presented at a free workshop jointly organized by the French working group on Multi-objective Mathematical Programming (PM2O) and the EURO working group on Metaheuristics in December 2002. It is the first book which considers both various metaheuristics and various kind of problems (e.g. combinatorial problems, real situations, non-linear problems) applied to multiple objective optimization. Metaheuristics used include: genetic algorithms, ant colony optimization, simulated annealing, scatter search, etc. Problems concern timetabling, vehicle routing, and more. Methodological aspects, such as quality evaluation, are also covered.
Download or read book Essentials of Metaheuristics Second Edition written by Sean Luke and published by . This book was released on 2012-12-20 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interested in the Genetic Algorithm? Simulated Annealing? Ant Colony Optimization? Essentials of Metaheuristics covers these and other metaheuristics algorithms, and is intended for undergraduate students, programmers, and non-experts. The book covers a wide range of algorithms, representations, selection and modification operators, and related topics, and includes 71 figures and 135 algorithms great and small. Algorithms include: Gradient Ascent techniques, Hill-Climbing variants, Simulated Annealing, Tabu Search variants, Iterated Local Search, Evolution Strategies, the Genetic Algorithm, the Steady-State Genetic Algorithm, Differential Evolution, Particle Swarm Optimization, Genetic Programming variants, One- and Two-Population Competitive Coevolution, N-Population Cooperative Coevolution, Implicit Fitness Sharing, Deterministic Crowding, NSGA-II, SPEA2, GRASP, Ant Colony Optimization variants, Guided Local Search, LEM, PBIL, UMDA, cGA, BOA, SAMUEL, ZCS, XCS, and XCSF.
Download or read book Handbook of Whale Optimization Algorithm written by Seyedali Mirjalili and published by Elsevier. This book was released on 2023-11-24 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Whale Optimization Algorithm: Variants, Hybrids, Improvements, and Applications provides the most in-depth look at an emerging meta-heuristic that has been widely used in both science and industry. Whale Optimization Algorithm has been cited more than 5000 times in Google Scholar, thus solving optimization problems using this algorithm requires addressing a number of challenges including multiple objectives, constraints, binary decision variables, large-scale search space, dynamic objective function, and noisy parameters to name a few. This handbook provides readers with in-depth analysis of this algorithm and existing methods in the literature to cope with such challenges. The authors and editors also propose several improvements, variants and hybrids of this algorithm. Several applications are also covered to demonstrate the applicability of methods in this book. Provides in-depth analysis of equations, mathematical models and mechanisms of the Whale Optimization Algorithm Proposes different variants of the Whale Optimization Algorithm to solve binary, multiobjective, noisy, dynamic and combinatorial optimization problems Demonstrates how to design, develop and test different hybrids of Whale Optimization Algorithm Introduces several application areas of the Whale Optimization Algorithm, focusing on sustainability Includes source code from applications and algorithms that is available online
Download or read book Metaheuristic and Machine Learning Optimization Strategies for Complex Systems written by R., Thanigaivelan and published by IGI Global. This book was released on 2024-07-17 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: In contemporary engineering domains, optimization and decision-making issues are crucial. Given the vast amounts of available data, processing times and memory usage can be substantial. Developing and implementing novel heuristic algorithms is time-consuming, yet even minor improvements in solutions can significantly reduce computational costs. In such scenarios, the creation of heuristics and metaheuristic algorithms has proven advantageous. The convergence of machine learning and metaheuristic algorithms offers a promising approach to address these challenges. Metaheuristic and Machine Learning Optimization Strategies for Complex Systems covers all areas of comprehensive information about hyper-heuristic models, hybrid meta-heuristic models, nature-inspired computing models, and meta-heuristic models. The key contribution of this book is the construction of a hyper-heuristic approach for any general problem domain from a meta-heuristic algorithm. Covering topics such as cloud computing, internet of things, and performance evaluation, this book is an essential resource for researchers, postgraduate students, educators, data scientists, machine learning engineers, software developers and engineers, policy makers, and more.
Download or read book Estimation of Distribution Algorithms written by Pedro Larrañaga and published by Springer Science & Business Media. This book was released on 2001-10-31 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is devoted to a new paradigm for evolutionary computation, named estimation of distribution algorithms (EDAs). This new class of algorithms generalizes genetic algorithms by replacing the crossover and mutation operators with learning and sampling from the probability distribution of the best individuals of the population at each iteration of the algorithm. Working in such a way, the relationships between the variables involved in the problem domain are explicitly and effectively captured and exploited. This text constitutes the first compilation and review of the techniques and applications of this new tool for performing evolutionary computation. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is clearly divided into three parts. Part I is dedicated to the foundations of EDAs. In this part, after introducing some probabilistic graphical models - Bayesian and Gaussian networks - a review of existing EDA approaches is presented, as well as some new methods based on more flexible probabilistic graphical models. A mathematical modeling of discrete EDAs is also presented. Part II covers several applications of EDAs in some classical optimization problems: the travelling salesman problem, the job scheduling problem, and the knapsack problem. EDAs are also applied to the optimization of some well-known combinatorial and continuous functions. Part III presents the application of EDAs to solve some problems that arise in the machine learning field: feature subset selection, feature weighting in K-NN classifiers, rule induction, partial abductive inference in Bayesian networks, partitional clustering, and the search for optimal weights in artificial neural networks. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is a useful and interesting tool for researchers working in the field of evolutionary computation and for engineers who face real-world optimization problems. This book may also be used by graduate students and researchers in computer science. `... I urge those who are interested in EDAs to study this well-crafted book today.' David E. Goldberg, University of Illinois Champaign-Urbana.
Download or read book Meta heuristic and Evolutionary Algorithms for Engineering Optimization written by Omid Bozorg-Haddad and published by John Wiley & Sons. This book was released on 2017-10-09 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique. Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm— and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book: Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization; Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner; Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms; Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering; Relates optimization algorithms to engineering problems employing a unifying approach. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science. OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran. MOHAMMAD SOLGI, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran. HUGO A. LOÁICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.
Download or read book Metaheuristics in Water Geotechnical and Transport Engineering written by Xin-She Yang and published by Newnes. This book was released on 2012-09 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to an ever-decreasing supply in raw materials and stringent constraints on conventional energy sources, demand for lightweight, efficient and low cost structures has become crucially important in modern engineering design. This requires engineers to search for optimal and robust design options to address design problems that are often large in scale and highly nonlinear, making finding solutions challenging. In the past two decades, metaheuristic algorithms have shown promising power, efficiency and versatility in solving these difficult optimization problems. This book examines the latest developments of metaheuristics and their applications in water, geotechnical and transport engineering offering practical case studies as examples to demonstrate real world applications. Topics cover a range of areas within engineering, including reviews of optimization algorithms, artificial intelligence, cuckoo search, genetic programming, neural networks, multivariate adaptive regression, swarm intelligence, genetic algorithms, ant colony optimization, evolutionary multiobjective optimization with diverse applications in engineering such as behavior of materials, geotechnical design, flood control, water distribution and signal networks. This book can serve as a supplementary text for design courses and computation in engineering as well as a reference for researchers and engineers in metaheursitics, optimization in civil engineering and computational intelligence. Provides detailed descriptions of all major metaheuristic algorithms with a focus on practical implementation Develops new hybrid and advanced methods suitable for civil engineering problems at all levels Appropriate for researchers and advanced students to help to develop their work
Download or read book Meta heuristic Optimization Techniques written by Anuj Kumar and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-01-19 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a thorough overview of the most popular and researched meta-heuristic optimization techniques and nature-inspired algorithms. Their wide applicability makes them a hot research topic and an effi cient tool for the solution of complex optimization problems in various fi elds of sciences, engineering, and in numerous industries.