Download or read book Deep Learning Techniques for IoT Security and Privacy written by Mohamed Abdel-Basset and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.
Download or read book Deep Learning Techniques for IoT Security and Privacy written by Mohamed Abdel-Basset and published by Springer Nature. This book was released on 2021-12-05 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.
Download or read book Challenges and Opportunities for the Convergence of IoT Big Data and Cloud Computing written by Velayutham, Sathiyamoorthi and published by IGI Global. This book was released on 2021-01-29 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research on the relation between these technologies and the impact they collectively have in solving real-world challenges. While highlighting topics such as cloud-based analytics, intelligent algorithms, and information security, this publication explores current issues that remain when attempting to implement these systems as well as the specific applications IoT, big data, and cloud computing have in various professional sectors. This book is ideally designed for academicians, researchers, developers, computer scientists, IT professionals, practitioners, scholars, students, and engineers seeking research on the integration of emerging technologies to solve modern societal issues.
Download or read book Examining the Impact of Deep Learning and IoT on Multi Industry Applications written by Raut, Roshani and published by IGI Global. This book was released on 2021-01-29 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning, as a recent AI technique, has proven itself efficient in solving many real-world problems. Deep learning algorithms are efficient, high performing, and an effective standard for solving these problems. In addition, with IoT, deep learning is in many emerging and developing domains of computer technology. Deep learning algorithms have brought a revolution in computer vision applications by introducing an efficient solution to several image processing-related problems that have long remained unresolved or moderately solved. Various significant IoT technologies in various industries, such as education, health, transportation, and security, combine IoT with deep learning for complex problem solving and the supported interaction between human beings and their surroundings. Examining the Impact of Deep Learning and IoT on Multi-Industry Applications provides insights on how deep learning, together with IoT, impacts various sectors such as healthcare, agriculture, cyber security, and social media analysis applications. The chapters present solutions to various real-world problems using these methods from various researchers’ points of view. While highlighting topics such as medical diagnosis, power consumption, livestock management, security, and social media analysis, this book is ideal for IT specialists, technologists, security analysts, medical practitioners, imaging specialists, diagnosticians, academicians, researchers, industrial experts, scientists, and undergraduate and postgraduate students who are working in the field of computer engineering, electronics, and electrical engineering.
Download or read book Security Risk Management for the Internet of Things written by John Soldatos and published by . This book was released on 2020-06-15 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the rising complexity of Internet of Things (IoT) systems has increased their potential vulnerabilities and introduced new cybersecurity challenges. In this context, state of the art methods and technologies for security risk assessment have prominent limitations when it comes to large scale, cyber-physical and interconnected IoT systems. Risk assessments for modern IoT systems must be frequent, dynamic and driven by knowledge about both cyber and physical assets. Furthermore, they should be more proactive, more automated, and able to leverage information shared across IoT value chains. This book introduces a set of novel risk assessment techniques and their role in the IoT Security risk management process. Specifically, it presents architectures and platforms for end-to-end security, including their implementation based on the edge/fog computing paradigm. It also highlights machine learning techniques that boost the automation and proactiveness of IoT security risk assessments. Furthermore, blockchain solutions for open and transparent sharing of IoT security information across the supply chain are introduced. Frameworks for privacy awareness, along with technical measures that enable privacy risk assessment and boost GDPR compliance are also presented. Likewise, the book illustrates novel solutions for security certification of IoT systems, along with techniques for IoT security interoperability. In the coming years, IoT security will be a challenging, yet very exciting journey for IoT stakeholders, including security experts, consultants, security research organizations and IoT solution providers. The book provides knowledge and insights about where we stand on this journey. It also attempts to develop a vision for the future and to help readers start their IoT Security efforts on the right foot.
Download or read book Security and Privacy Issues in Sensor Networks and IoT written by Ahlawat, Priyanka and published by IGI Global. This book was released on 2019-10-25 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: As technology continues to expand and develop, the internet of things (IoT) is playing a progressive role in the infrastructure of electronics. The increasing amount of IoT devices, however, has led to the emergence of significant privacy and security challenges. Security and Privacy Issues in Sensor Networks and IoT is a collection of innovative research on the methods and applications of protection disputes in the internet of things and other computing structures. While highlighting topics that include cyber defense, digital forensics, and intrusion detection, this book is ideally designed for security analysts, IT specialists, software developers, computer engineers, industry professionals, academicians, students, and researchers seeking current research on defense concerns in cyber physical systems.
Download or read book Deep Learning Applications for Cyber Security written by Mamoun Alazab and published by Springer. This book was released on 2019-08-14 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cybercrime remains a growing challenge in terms of security and privacy practices. Working together, deep learning and cyber security experts have recently made significant advances in the fields of intrusion detection, malicious code analysis and forensic identification. This book addresses questions of how deep learning methods can be used to advance cyber security objectives, including detection, modeling, monitoring and analysis of as well as defense against various threats to sensitive data and security systems. Filling an important gap between deep learning and cyber security communities, it discusses topics covering a wide range of modern and practical deep learning techniques, frameworks and development tools to enable readers to engage with the cutting-edge research across various aspects of cyber security. The book focuses on mature and proven techniques, and provides ample examples to help readers grasp the key points.
Download or read book Research Anthology on Artificial Intelligence Applications in Security written by Management Association, Information Resources and published by IGI Global. This book was released on 2020-11-27 with total page 2253 pages. Available in PDF, EPUB and Kindle. Book excerpt: As industries are rapidly being digitalized and information is being more heavily stored and transmitted online, the security of information has become a top priority in securing the use of online networks as a safe and effective platform. With the vast and diverse potential of artificial intelligence (AI) applications, it has become easier than ever to identify cyber vulnerabilities, potential threats, and the identification of solutions to these unique problems. The latest tools and technologies for AI applications have untapped potential that conventional systems and human security systems cannot meet, leading AI to be a frontrunner in the fight against malware, cyber-attacks, and various security issues. However, even with the tremendous progress AI has made within the sphere of security, it’s important to understand the impacts, implications, and critical issues and challenges of AI applications along with the many benefits and emerging trends in this essential field of security-based research. Research Anthology on Artificial Intelligence Applications in Security seeks to address the fundamental advancements and technologies being used in AI applications for the security of digital data and information. The included chapters cover a wide range of topics related to AI in security stemming from the development and design of these applications, the latest tools and technologies, as well as the utilization of AI and what challenges and impacts have been discovered along the way. This resource work is a critical exploration of the latest research on security and an overview of how AI has impacted the field and will continue to advance as an essential tool for security, safety, and privacy online. This book is ideally intended for cyber security analysts, computer engineers, IT specialists, practitioners, stakeholders, researchers, academicians, and students interested in AI applications in the realm of security research.
Download or read book Handbook of Research on Machine and Deep Learning Applications for Cyber Security written by Ganapathi, Padmavathi and published by IGI Global. This book was released on 2019-07-26 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the advancement of technology continues, cyber security continues to play a significant role in todays world. With society becoming more dependent on the internet, new opportunities for virtual attacks can lead to the exposure of critical information. Machine and deep learning techniques to prevent this exposure of information are being applied to address mounting concerns in computer security. The Handbook of Research on Machine and Deep Learning Applications for Cyber Security is a pivotal reference source that provides vital research on the application of machine learning techniques for network security research. While highlighting topics such as web security, malware detection, and secure information sharing, this publication explores recent research findings in the area of electronic security as well as challenges and countermeasures in cyber security research. It is ideally designed for software engineers, IT specialists, cybersecurity analysts, industrial experts, academicians, researchers, and post-graduate students.
Download or read book Machine Learning Approaches for Convergence of IoT and Blockchain written by Krishna Kant Singh and published by John Wiley & Sons. This book was released on 2021-07-16 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: MACHINE LEARNING APPROACHES FOR CONVERGENCE OF IOT AND BLOCKCHAIN The unique aspect of this book is that its focus is the convergence of machine learning, IoT, and blockchain in a single publication. Blockchain technology and the Internet of Things (IoT) are two of the most impactful trends to have emerged in the field of machine learning. Although there are a number of books available solely on the subjects of machine learning, IoT and blockchain technology, no such book has been available which focuses on machine learning techniques for IoT and blockchain convergence until now. Thus, this book is unique in terms of the topics it covers. Designed as an essential guide for all academicians, researchers, and those in industry who are working in related fields, this book will provide insights into the convergence of blockchain technology and the IoT with machine learning. Highlights of the book include: Examines many industries such as agriculture, manufacturing, food production, healthcare, the military, and IT Security of the Internet of Things using blockchain and AI Developing smart cities and transportation systems using machine learning and IoT Audience The target audience of this book is professionals and researchers (artificial intelligence specialists, systems engineers, information technologists) in the fields of machine learning, IoT, and blockchain technology.
Download or read book Research Anthology on Privatizing and Securing Data written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-04-23 with total page 2188 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the immense amount of data that is now available online, security concerns have been an issue from the start, and have grown as new technologies are increasingly integrated in data collection, storage, and transmission. Online cyber threats, cyber terrorism, hacking, and other cybercrimes have begun to take advantage of this information that can be easily accessed if not properly handled. New privacy and security measures have been developed to address this cause for concern and have become an essential area of research within the past few years and into the foreseeable future. The ways in which data is secured and privatized should be discussed in terms of the technologies being used, the methods and models for security that have been developed, and the ways in which risks can be detected, analyzed, and mitigated. The Research Anthology on Privatizing and Securing Data reveals the latest tools and technologies for privatizing and securing data across different technologies and industries. It takes a deeper dive into both risk detection and mitigation, including an analysis of cybercrimes and cyber threats, along with a sharper focus on the technologies and methods being actively implemented and utilized to secure data online. Highlighted topics include information governance and privacy, cybersecurity, data protection, challenges in big data, security threats, and more. This book is essential for data analysts, cybersecurity professionals, data scientists, security analysts, IT specialists, practitioners, researchers, academicians, and students interested in the latest trends and technologies for privatizing and securing data.
Download or read book Security and Privacy in the Internet of Things written by Ali Ismail Awad and published by John Wiley & Sons. This book was released on 2021-12-29 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: SECURITY AND PRIVACY IN THE INTERNET OF THINGS Provides the authoritative and up-to-date information required for securing IoT architecture and applications The vast amount of data generated by the Internet of Things (IoT) has made information and cyber security vital for not only personal privacy, but also for the sustainability of the IoT itself. Security and Privacy in the Internet of Things brings together high-quality research on IoT security models, architectures, techniques, and application domains. This concise yet comprehensive volume explores state-of-the-art mitigations in IoT security while addressing important security and privacy challenges across different IoT layers. The book provides timely coverage of IoT architecture, security technologies and mechanisms, and applications. The authors outline emerging trends in IoT security and privacy with a focus on areas such as smart environments and e-health. Topics include authentication and access control, attack detection and prevention, securing IoT through traffic modeling, human aspects in IoT security, and IoT hardware security. Presenting the current body of knowledge in a single volume, Security and Privacy in the Internet of Things: Discusses a broad range of IoT attacks and defense mechanisms Examines IoT security and privacy protocols and approaches Covers both the logical and physical security of IoT devices Addresses IoT security through network traffic modeling Describes privacy preserving techniques in smart cities Explores current threat and vulnerability analyses Security and Privacy in the Internet of Things: Architectures, Techniques, and Applications is essential reading for researchers, industry practitioners, and students involved in IoT security development and IoT systems deployment.
Download or read book IoT Security Paradigms and Applications written by Sudhir Kumar Sharma and published by CRC Press. This book was released on 2020-10-08 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integration of IoT (Internet of Things) with big data and cloud computing has brought forward numerous advantages and challenges such as data analytics, integration, and storage. This book highlights these challenges and provides an integrating framework for these technologies, illustrating the role of blockchain in all possible facets of IoT security. Furthermore, it investigates the security and privacy issues associated with various IoT systems along with exploring various machine learning-based IoT security solutions. This book brings together state-of-the-art innovations, research activities (both in academia and in industry), and the corresponding standardization impacts of 5G as well. Aimed at graduate students, researchers in computer science and engineering, communication networking, IoT, machine learning and pattern recognition, this book Showcases the basics of both IoT and various security paradigms supporting IoT, including Blockchain Explores various machine learning-based IoT security solutions and highlights the importance of IoT for industries and smart cities Presents various competitive technologies of Blockchain, especially concerned with IoT security Provides insights into the taxonomy of challenges, issues, and research directions in IoT-based applications Includes examples and illustrations to effectively demonstrate the principles, algorithm, applications, and practices of security in the IoT environment
Download or read book Integrating the Internet of Things Into Software Engineering Practices written by Mala, D. Jeya and published by IGI Global. This book was released on 2019-01-25 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: To provide the necessary security and quality assurance activities into Internet of Things (IoT)-based software development, innovative engineering practices are vital. They must be given an even higher level of importance than most other events in the field. Integrating the Internet of Things Into Software Engineering Practices provides research on the integration of IoT into the software development life cycle (SDLC) in terms of requirements management, analysis, design, coding, and testing, and provides security and quality assurance activities to IoT-based software development. The content within this publication covers agile software, language specification, and collaborative software and is designed for analysts, security experts, IoT software programmers, computer and software engineers, students, professionals, and researchers.
Download or read book Design and Development of Efficient Energy Systems written by Suman Lata Tripathi and published by John Wiley & Sons. This book was released on 2021-03-16 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is not a single industry which will not be transformed by machine learning and Internet of Things (IoT). IoT and machine learning have altogether changed the technological scenario by letting the user monitor and control things based on the prediction made by machine learning algorithms. There has been substantial progress in the usage of platforms, technologies and applications that are based on these technologies. These breakthrough technologies affect not just the software perspective of the industry, but they cut across areas like smart cities, smart healthcare, smart retail, smart monitoring, control, and others. Because of these “game changers,” governments, along with top companies around the world, are investing heavily in its research and development. Keeping pace with the latest trends, endless research, and new developments is paramount to innovate systems that are not only user-friendly but also speak to the growing needs and demands of society. This volume is focused on saving energy at different levels of design and automation including the concept of machine learning automation and prediction modeling. It also deals with the design and analysis for IoT-enabled systems including energy saving aspects at different level of operation. The editors and contributors also cover the fundamental concepts of IoT and machine learning, including the latest research, technological developments, and practical applications. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of IoT and machine technology, this is a must-have for any library.
Download or read book Future Data and Security Engineering Big Data Security and Privacy Smart City and Industry 4 0 Applications written by Tran Khanh Dang and published by Springer. This book was released on 2021-11-14 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 8th International Conference on Future Data and Security Engineering, FDSE 2021, held in Ho Chi Minh City, Vietnam, in November 2021.* The 28 full papers and 8 short were carefully reviewed and selected from 168 submissions. The selected papers are organized into the following topical headings: big data analytics and distributed systems; security and privacy engineering; industry 4.0 and smart city: data analytics and security; blockchain and access control; data analytics and healthcare systems; and short papers: security and data engineering. * The conference was held virtually due to the COVID-19 pandemic.
Download or read book Machine Learning Approach for Cloud Data Analytics in IoT written by Sachi Nandan Mohanty and published by John Wiley & Sons. This book was released on 2021-07-14 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Approach for Cloud Data Analytics in IoT The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. Machine Learning Approach for Cloud Data Analytics in IoT elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.