EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advancement of Deep Learning and its Applications in Object Detection and Recognition

Download or read book Advancement of Deep Learning and its Applications in Object Detection and Recognition written by Roohie Naaz Mir and published by CRC Press. This book was released on 2023-05-10 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Object detection is a basic visual identification problem in computer vision that has been explored extensively over the years. Visual object detection seeks to discover objects of specific target classes in a given image with pinpoint accuracy and apply a class label to each object instance. Object recognition strategies based on deep learning have been intensively investigated in recent years as a result of the remarkable success of deep learning-based image categorization. In this book, we go through in detail detector architectures, feature learning, proposal generation, sampling strategies, and other issues that affect detection performance. The book describes every newly proposed novel solution but skips through the fundamentals so that readers can see the field's cutting edge more rapidly. Moreover, unlike prior object detection publications, this project analyses deep learning-based object identification methods systematically and exhaustively, and also gives the most recent detection solutions and a collection of noteworthy research trends. The book focuses primarily on step-by-step discussion, an extensive literature review, detailed analysis and discussion, and rigorous experimentation results. Furthermore, a practical approach is displayed and encouraged.

Book DEEP SALIENCY DETECTION   COLO

Download or read book DEEP SALIENCY DETECTION COLO written by Guanbin Li and published by Open Dissertation Press. This book was released on 2017-01-26 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Deep Saliency Detection and Color Sketch Generation" by Guanbin, Li, 李冠彬, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: In recent years, with a wide spread of mobile devices with cameras, image has become an important medium for people to record and share their life, and has thus been witnessed a massive increase. Intelligent technique of image analysis and understanding, which focuses on extracting meaningful information from images, is becoming increasingly important. To keep up with its rapid development, the research and industry community has endeavored to develop advanced image analysis algorithms and their accompanying applications. This thesis demonstrates both novel algorithms in image analysis and a practical application system. It consists of two novel deep learning based salient object detection algorithms and a color sketch generation system. For salient object detection, we present two different approaches. The first one formulates saliency detection as a segment-wise regression problem and introduces a neural network architecture to map each segment to a saliency score. The proposed neural network architecture consists of fully connected layers on top of CNNs responsible for feature extraction at three different scales. The second approach is a deep network which consists of two complementary components, a pixel-level fully convolutional stream and a segment-wise spatial pooling stream. The first stream directly produces a saliency map with pixel-level accuracy from an input image while the second stream extracts segment-wise features very efficiently, and better models saliency discontinuities along object boundaries. Finally, a fully connected CRF model can be optionally incorporated to improve spatial coherence and contour localization in saliency maps generated from both of the two proposed methods. Experimental results demonstrate that our two deep learning based saliency detection models significantly improve the state of the art. For color sketch generation, we introduce an interactive drawing system, called ColorSketch, for helping novice users generate color sketches from photos. Our system is motivated by the fact that novice users are often capable of tracing object boundaries using pencil strokes, but have difficulties to choose proper colors and brush over an image region in a visually pleasing way. To preserve artistic freedom and expressiveness, our system lets users have full control over pencil strokes for depicting object shapes and geometric details at an appropriate level of abstraction, and automatically augment pencil sketches using color brushes, such as color mapping, brush stroke rendering as well as blank area creation. Experimental and user study results demonstrate that users, especially novice ones, can generate much better color sketches more efficiently with our system than using traditional manual tools. Subjects: Computer drawing Computer vision

Book Effective Deep Learning Methodologies for Salient Object Detection

Download or read book Effective Deep Learning Methodologies for Salient Object Detection written by Guangyu Ren and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Object Detection with Deep Learning Models

Download or read book Object Detection with Deep Learning Models written by S Poonkuntran and published by CRC Press. This book was released on 2022-11-01 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Object Detection with Deep Learning Models discusses recent advances in object detection and recognition using deep learning methods, which have achieved great success in the field of computer vision and image processing. It provides a systematic and methodical overview of the latest developments in deep learning theory and its applications to computer vision, illustrating them using key topics, including object detection, face analysis, 3D object recognition, and image retrieval. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in deep learning, computer vision and beyond and can also be used as a reference book. The comprehensive comparison of various deep-learning applications helps readers with a basic understanding of machine learning and calculus grasp the theories and inspires applications in other computer vision tasks. Features: A structured overview of deep learning in object detection A diversified collection of applications of object detection using deep neural networks Emphasize agriculture and remote sensing domains Exclusive discussion on moving object detection

Book Deep Learning for Crack Like Object Detection

Download or read book Deep Learning for Crack Like Object Detection written by Kaige Zhang and published by CRC Press. This book was released on 2023-03-20 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision-based crack-like object detection has many useful applications, such as inspecting/monitoring pavement surface, underground pipeline, bridge cracks, railway tracks etc. However, in most contexts, cracks appear as thin, irregular long-narrow objects, and often are buried in complex, textured background with high diversity which make the crack detection very challenging. During the past a few years, deep learning technique has achieved great success and has been utilized for solving a variety of object detection problems. This book discusses crack-like object detection problem comprehensively. It starts by discussing traditional image processing approaches for solving this problem, and then introduces deep learning-based methods. It provides a detailed review of object detection problems and focuses on the most challenging problem, crack-like object detection, to dig deep into the deep learning method. It includes examples of real-world problems, which are easy to understand and could be a good tutorial for introducing computer vision and machine learning.

Book Deep Learning in Object Recognition  Detection  and Segmentation

Download or read book Deep Learning in Object Recognition Detection and Segmentation written by Xiaogang Wang and published by . This book was released on 2016 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a major breakthrough in artificial intelligence, deep learning has achieved very impressive success in solving grand challenges in many fields including speech recognition, natural language processing, computer vision, image and video processing, and multimedia. This article provides a historical overview of deep learning and focus on its applications in object recognition, detection, and segmentation, which are key challenges of computer vision and have numerous applications to images and videos. The discussed research topics on object recognition include image classification on ImageNet, face recognition, and video classification. The detection part covers general object detection on ImageNet, pedestrian detection, face landmark detection (face alignment), and human landmark detection (pose estimation). On the segmentation side, the article discusses the most recent progress on scene labeling, semantic segmentation, face parsing, human parsing and saliency detection. Object recognition is considered as whole-image classification, while detection and segmentation are pixelwise classification tasks. Their fundamental differences will be discussed in this article. Fully convolutional neural networks and highly efficient forward and backward propagation algorithms specially designed for pixelwise classification task will be introduced. The covered application domains are also much diversified. Human and face images have regular structures, while general object and scene images have much more complex variations in geometric structures and layout. Videos include the temporal dimension. Therefore, they need to be processed with different deep models. All the selected domain applications have received tremendous attentions in the computer vision and multimedia communities. Through concrete examples of these applications, we explain the key points which make deep learning outperform conventional computer vision systems. (1) Different than traditional pattern recognition systems, which heavily rely on manually designed features, deep learning automatically learns hierarchical feature representations from massive training data and disentangles hidden factors of input data through multi-level nonlinear mappings. (2) Different than existing pattern recognition systems which sequentially design or train their key components, deep learning is able to jointly optimize all the components and crate synergy through close interactions among them. (3) While most machine learning models can be approximated with neural networks with shallow structures, for some tasks, the expressive power of deep models increases exponentially as their architectures go deep. Deep models are especially good at learning global contextual feature representation with their deep structures. (4) Benefitting from the large learning capacity of deep models, some classical computer vision challenges can be recast as high-dimensional data transform problems and can be solved from new perspectives. Finally, some open questions and future works regarding to deep learning in object recognition, detection, and segmentation will be discussed.

Book Detection of Salient Objects in Images Using Frequency Domain and Deep Convolutional Features

Download or read book Detection of Salient Objects in Images Using Frequency Domain and Deep Convolutional Features written by Masoumeh Rezaei Abkenar and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In image processing and computer vision tasks such as object of interest image segmentation, adaptive image compression, object based image retrieval, seam carving, and medical imaging, the cost of information storage and computational complexity is generally a great concern. Therefore, for these and other applications, identifying and focusing only on the parts of the image that are visually most informative is much desirable. These most informative parts or regions that also have more contrast with the rest of the image are called the salient regions of the image, and the process of identifying them is referred to as salient object detection. The main challenges in devising a salient object detection scheme are in extracting the image features that correctly differentiate the salient objects from the non-salient ones, and then utilizing them to detect the salient objects accurately. Several salient object detection methods have been developed in the literature using spatial domain image features. However, these methods generally cannot detect the salient objects uniformly or with clear boundaries between the salient and non-salient regions. This is due to the fact that in these methods, unnecessary frequency content of the image get retained or the useful ones from the original image get suppressed. Frequency domain features can address these limitations by providing a better representation of the image. Some salient object detection schemes have been developed based on the features extracted using the Fourier or Fourier like transforms. While these methods are more successful in detecting the entire salient object in images with small salient regions, in images with large salient regions these methods have a tendency to highlight the boundaries of the salient region rather than doing so for the entire salient region. This is due to the fact that in the Fourier transform of an image, the global contrast is more dominant than the local ones. Moreover, it is known that the Fourier transform cannot provide simultaneous spatial and frequency localization. It is known that multi-resolution feature extraction techniques can provide more accurate features for different image processing tasks, since features that might not get extracted at one resolution may be detected at another resolution. However, not much work has been done to employ multi-resolution feature extraction techniques for salient object detection. In view of this, the objective of this thesis is to develop schemes for image salient object detection using multi-resolution feature extraction techniques both in the frequency domain and the spatial domain. The first part of this thesis is concerned with developing salient object detection methods using multi-resolution frequency domain features. The wavelet transform has the ability of performing multi-resolution simultaneous spatial and frequency localized analysis, which makes it a better feature extraction tool compared to the Fourier or other Fourier like transforms. In this part of the thesis, first a salient object detection scheme is developed by extracting features from the high-pass coefficients of the wavelet decompositions of the three color channels of images, and devising a scheme for the weighted linear combination of the color channel features. Despite the advantages of the wavelet transform in image feature extraction, it is not very effective in capturing line discontinuities, which correspond to directional information in the image. In order to circumvent the lack of directional flexibility of the wavelet-based features, in this part of the thesis, another salient object detection scheme is also presented by extracting local and global features from the non-subsampled contourlet coefficients of the image color channels. The local features are extracted from the local variations of the low-pass coefficients, whereas the global features are obtained based on the distribution of the subband coefficients afforded by the directional flexibility provided by the non-subsampled contourlet transform. In the past few years, there has been a surge of interest in employing deep convolutional neural networks to extract image features for different applications. These networks provide a platform for automatically extracting low-level appearance features and high-level semantic features at different resolutions from the raw images. The second part of this thesis is, therefore, concerned with the investigation of salient object detection using multiresolution deep convolutional features. The existing deep salient object detection schemes are based on the standard convolution. However, performing the standard convolution is computationally expensive specially when the number of channels increases through the layers of a deep network. In this part of the thesis, using a lightweight depthwise separable convolution, a deep salient object detection network that exploits the fusion of multi-level and multi-resolution image features through judicious skip connections between the layers is developed. The proposed deep salient object detection network is aimed at providing good performance with a much reduced complexity compared to the existing deep salient object detection methods. Extensive experiments are conducted in order to evaluate the performance of the proposed salient object detection methods by applying them to the natural images from several datasets. It is shown that the performance of the proposed methods are superior to that of the existing methods of salient object detection.

Book Deep Hierarchical Architectures for Saliency Prediction and Salient Object Detection

Download or read book Deep Hierarchical Architectures for Saliency Prediction and Salient Object Detection written by Yu Hu and published by . This book was released on 2016 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the second investigation, I propose a hybrid Salient Object Detection (SOD) model that consists of the modified ASM and the potential Region-Of-Interest (p-ROI) approximation. Different from the ASM used in first investigation in which the ground truth of continuous saliency values is required to train the model, the ASM used in this investigation needs the binary ground truth only to detect salient objects. Specifically, the ASM aims to assign pixels in the input image with saliency values and p-ROI is used to validate the saliency region with a segmentation approach. Both ASM and PROI contribute to the improvement of object detection performance. ASM is used to refine performance of p-ROI by targeting at details, while p-ROI is to enhance the capability of ASM by exploring on the entire input image. The metrics including precision and recall curve and Area Under Curve (AUC) are adopted to evaluate the performance of my approach of SOD. Experimental results on a dataset with manually demarcated ground truth demonstrate a superior performance of the hybrid SOD model comparing with each individual method. In the third investigation, ASM is utilized to learn the heat maps of human eye gaze data. I first employ ASM with the Rprop algorithm to generate heat maps and show that the deep learning method can only achieve a moderate performance. Then I modify the approach to have the deep neural network pre-trained on Itti saliency maps and show that this pre-training process can slightly improve the performance. The metrics including precision and recall curve, Receiver Operating Characteristic (ROC) and AUC are adopted to evaluate the performance of my leaning model on both the OSIE dataset and the CAT2000 dataset.

Book Saliency Ranking Using Deep Learning

Download or read book Saliency Ranking Using Deep Learning written by Mahmoud Kalash and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Salient object detection is a problem that has been considered in detail and many solutions proposed. In this thesis, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried which implies a relative rank exists on salient objects. In this thesis, we solve this more general problem that considers relative rank. A novel deep learning solution is proposed based on a hierarchical representation of relative saliency and stage-wise refinement to address both of the saliency ranking and subitizing tasks. We also present methods for deriving suitable ranked salient object instances to generate a large scale dataset for saliency ranking, along with metrics suitable to measuring success in a relative object saliency landscape. Our approach exceeds performance of any prior work across all metrics considered (both traditional and newly proposed).

Book DEEP LEARNING BASED OBJECT PERCEPTION ALGORITHM AND APPLICATION

Download or read book DEEP LEARNING BASED OBJECT PERCEPTION ALGORITHM AND APPLICATION written by Fan Yang and published by . This book was released on 2020 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Object perception as a fundamental task in computer vision has a broad of applicationin real word, such as self-driving, industrial defect inspection, intelligent agriculture. Numerous works have been studied to advance the progress of object perception. In particular, due to the powerful feature learning and representation ability of deep learning, object perception algorithm has achieved signicant progress. In the dissertation, I rst introduce the denition of object perception and its three subtasks: object detection, pose estimation, and object segmentation; then specically present our works in the three subtasks, respectively. Object detection: we conduct two works, clustered object detection in aerial image (ClusDet) and dually supervised feature pyramid for object detection and segmentation (DSFPN). The ClusDet is designed to leverage the prior that objects in aerial ( especially in trac scenario) tend to cluster in dierent scales for object detection. By comparing with evenly crop method, ClusDet can achieve superior precision with less computation load. The DSFPN is proposed to alleviate the gradient degradation or vanishing problem in feature pyramid network (FPN) for object detection and segmentation. In particular, we note that performance of the two-stage detectors do not constantly increase with the growing complexity of backbone network, which is consistent with the conclusion in \deep residual learning for image recognition". To mitigate the problem, we propose to add extra supervision signal on bottom-up path of FPN in training phase to enhance the gradient information so as to facilitate the model training. Pose estimation: a robust dynamic fusion (RDF) algorithm is proposed to deal with noisy modalities in patient body modeling. In particular, for patient body modeling, the RGB camera cannot provide sucient information because of the body covered with blanket or loosen cloth. In this case, multi-modality (e.g., RGB, thermal, depth) sensors are required to acquire complimentary information. However, dierent application may need dierent sensors. It is labor-intensive and time-consuming to train a model per an application. In addition, multi-modality images may come to various noise in deployment, so that the trained model fails to work precisely. To deal with the aforementioned issues, we propose the RDF in conjunction with a dynamic training strategy to adaptively depress the features from noisy modalities, such that the model can be trained once and deployed any of the modalities. Object segmentation: the object here refers to crack, we propose a feature pyramid and hierarchical boosting network (FPHBN) for pavement crack detection. Specically, the crack in pavement has various scales (width), based on this characteristic, we introduce a feature pyramid architecture to utilize the inherent hierarchy of deep convolution networks (DConvNets) to construct multi-scale features for multi-scale cracks. Beside, each layer of the DConvNets is not independent, to leverage this dependency, we design a hierarchical boosting module to reweight samples via the prediction from adjunct layer. With the benet of the boosting module, the proposed network can dynamically pay more attention to hard samples.

Book Salient Object Detection and Segmentation in Video Surveillance

Download or read book Salient Object Detection and Segmentation in Video Surveillance written by Siyue Yu and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Artificial Intelligence on Fashion and Textiles

Download or read book Artificial Intelligence on Fashion and Textiles written by Wai Keung Wong and published by Springer. This book was released on 2018-10-13 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book includes the Proceedings of the Artificial Intelligence on Fashion and Textiles conference 2018 which provides state-of-the-art techniques and applications of AI in the fashion and textile industries. It is essential reading for scientists, researchers and R&D professionals working in the field of AI with applications in the fashion and textile industry; managers in the fashion and textile enterprises; and anyone with an interest in the applications of AI. Over the last two decades, with the great advancement of computer technology, academic research in artificial intelligence (AI) and its applications in fashion and textile supply chain has been becoming a very hot topic and has received greater attention from both academics and industrialists. A number of AI-related techniques has been successfully employed and proven to handle the problems including fashion sales forecasting, supply chain optimization, planning and scheduling, textile material defect detection, fashion and textile image recognition, fashion image and style retrieval, human body modeling and fitting, etc.

Book Pattern Discrimination

Download or read book Pattern Discrimination written by Clemens Apprich and published by U of Minnesota Press. This book was released on 2018-11-13 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: How do “human” prejudices reemerge in algorithmic cultures allegedly devised to be blind to them? How do “human” prejudices reemerge in algorithmic cultures allegedly devised to be blind to them? To answer this question, this book investigates a fundamental axiom in computer science: pattern discrimination. By imposing identity on input data, in order to filter—that is, to discriminate—signals from noise, patterns become a highly political issue. Algorithmic identity politics reinstate old forms of social segregation, such as class, race, and gender, through defaults and paradigmatic assumptions about the homophilic nature of connection. Instead of providing a more “objective” basis of decision making, machine-learning algorithms deepen bias and further inscribe inequality into media. Yet pattern discrimination is an essential part of human—and nonhuman—cognition. Bringing together media thinkers and artists from the United States and Germany, this volume asks the urgent questions: How can we discriminate without being discriminatory? How can we filter information out of data without reinserting racist, sexist, and classist beliefs? How can we queer homophilic tendencies within digital cultures?