Download or read book Deep Generative Models and Data Augmentation Labelling and Imperfections written by Sandy Engelhardt and published by Springer Nature. This book was released on 2021-09-29 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First MICCAI Workshop on Deep Generative Models, DG4MICCAI 2021, and the First MICCAI Workshop on Data Augmentation, Labelling, and Imperfections, DALI 2021, held in conjunction with MICCAI 2021, in October 2021. The workshops were planned to take place in Strasbourg, France, but were held virtually due to the COVID-19 pandemic. DG4MICCAI 2021 accepted 12 papers from the 17 submissions received. The workshop focusses on recent algorithmic developments, new results, and promising future directions in Deep Generative Models. Deep generative models such as Generative Adversarial Network (GAN) and Variational Auto-Encoder (VAE) are currently receiving widespread attention from not only the computer vision and machine learning communities, but also in the MIC and CAI community. For DALI 2021, 15 papers from 32 submissions were accepted for publication. They focus on rigorous study of medical data related to machine learning systems.
Download or read book Generative Adversarial Networks for Image to Image Translation written by Arun Solanki and published by Academic Press. This book was released on 2021-06-22 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative Adversarial Networks (GAN) have started a revolution in Deep Learning, and today GAN is one of the most researched topics in Artificial Intelligence. Generative Adversarial Networks for Image-to-Image Translation provides a comprehensive overview of the GAN (Generative Adversarial Network) concept starting from the original GAN network to various GAN-based systems such as Deep Convolutional GANs (DCGANs), Conditional GANs (cGANs), StackGAN, Wasserstein GANs (WGAN), cyclical GANs, and many more. The book also provides readers with detailed real-world applications and common projects built using the GAN system with respective Python code. A typical GAN system consists of two neural networks, i.e., generator and discriminator. Both of these networks contest with each other, similar to game theory. The generator is responsible for generating quality images that should resemble ground truth, and the discriminator is accountable for identifying whether the generated image is a real image or a fake image generated by the generator. Being one of the unsupervised learning-based architectures, GAN is a preferred method in cases where labeled data is not available. GAN can generate high-quality images, images of human faces developed from several sketches, convert images from one domain to another, enhance images, combine an image with the style of another image, change the appearance of a human face image to show the effects in the progression of aging, generate images from text, and many more applications. GAN is helpful in generating output very close to the output generated by humans in a fraction of second, and it can efficiently produce high-quality music, speech, and images. - Introduces the concept of Generative Adversarial Networks (GAN), including the basics of Generative Modelling, Deep Learning, Autoencoders, and advanced topics in GAN - Demonstrates GANs for a wide variety of applications, including image generation, Big Data and data analytics, cloud computing, digital transformation, E-Commerce, and Artistic Neural Networks - Includes a wide variety of biomedical and scientific applications, including unsupervised learning, natural language processing, pattern recognition, image and video processing, and disease diagnosis - Provides a robust set of methods that will help readers to appropriately and judiciously use the suitable GANs for their applications
Download or read book Deep Generative Models written by Anirban Mukhopadhyay and published by Springer Nature. This book was released on with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Biomedical Image Synthesis and Simulation written by Ninon Burgos and published by Elsevier. This book was released on 2022-06-23 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical Image Synthesis and Simulations: Methods and Applications presents the latest on basic concepts and applications in image-based simulation and synthesis used in medical and biomedical imaging. Sections introduce and describe the simulation and synthesis methods that were developed and successfully used within the last twenty years and give examples of successful applications of these methods. As the book provides a survey of all the commonly established approaches and more recent deep learning methods, it is highly suitable for graduate students and researchers in medical and biomedical imaging.
Download or read book An Introduction to Variational Autoencoders written by Diederik P. Kingma and published by . This book was released on 2019-11-12 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Variational Autoencoders provides a quick summary for the of a topic that has become an important tool in modern-day deep learning techniques.
Download or read book Handbook of Medical Image Computing and Computer Assisted Intervention written by S. Kevin Zhou and published by Academic Press. This book was released on 2019-10-18 with total page 1074 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention. - Presents the key research challenges in medical image computing and computer-assisted intervention - Written by leading authorities of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society - Contains state-of-the-art technical approaches to key challenges - Demonstrates proven algorithms for a whole range of essential medical imaging applications - Includes source codes for use in a plug-and-play manner - Embraces future directions in the fields of medical image computing and computer-assisted intervention
Download or read book Advances in Deep Generative Models for Medical Artificial Intelligence written by Hazrat Ali and published by Springer Nature. This book was released on 2023-12-16 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative Artificial Intelligence is rapidly advancing with many state-of-the-art performances on computer vision, speech processing, and natural language processing tasks. Generative adversarial networks and neural diffusion models can generate high-quality synthetic images of human faces, artworks, and coherent essays on different topics. Generative models are also transforming Medical Artificial Intelligence, given their potential to learn complex features from medical imaging and healthcare data. Hence, computer-aided diagnosis and healthcare are benefiting from Medical Artificial Intelligence and Generative Artificial Intelligence. This book presents the recent advances in generative models for Medical Artificial Intelligence. It covers many applications of generative models for medical image data, including volumetric medical image segmentation, data augmentation, MRI reconstruction, and modeling of spatiotemporal medical data. This book highlights the recent advancements in Generative Artificial Intelligence for medical and healthcare applications, using medical imaging and clinical and electronic health records data. Furthermore, the book comprehensively presents the concepts and applications of deep learning-based artificial intelligence methods, such as generative adversarial networks, convolutional neural networks, and vision transformers. It also presents a quantitative and qualitative analysis of data augmentation and synthesis performances of Generative Artificial Intelligence models. This book is the result of the collaborative efforts and hard work of many minds who contributed to it and illuminated the vast landscape of Medical Artificial Intelligence. The book is suitable for reading by computer science researchers, medical professionals, healthcare informatics, and medical imaging researchers interested in understanding the potential of artificial intelligence in healthcare. It serves as a compass for navigating the artificial intelligence-driven healthcare landscape.
Download or read book Deep Learning in Medical Image Analysis written by Gobert Lee and published by Springer Nature. This book was released on 2020-02-06 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.
Download or read book Simulation and Synthesis in Medical Imaging written by Sotirios A. Tsaftaris and published by Springer. This book was released on 2017-09-28 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Workshop on Simulation and Synthesis in Medical Imaging, held in conjunction with MICCAI 2017, in Québec City, Canada, in September 2017. The 11 revised full papers presented were carefully reviewed and selected from 14 submissions. The contributions span the following broad categories: cross modality (PET/MR, PET/CT, CT/MR, etc.) image synthesis, simulation and synthesis from large-scale image databases, automated techniques for quality assessment images, and several applications of image synthesis and simulation in medical imaging such as image interpolation and segmentation, image reconstruction, cell imaging, and blood flow.
Download or read book Machine Learning for Medical Image Reconstruction written by Farah Deeba and published by Springer Nature. This book was released on 2020-10-21 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually. The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.
Download or read book Software Engineering Methods Design and Application written by Radek Silhavy and published by Springer Nature. This book was released on with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Medical Image Computing and Computer Assisted Intervention MICCAI 2017 written by Maxime Descoteaux and published by Springer. This book was released on 2017-09-03 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set LNCS 10433, 10434, and 10435 constitutes the refereed proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017, held inQuebec City, Canada, in September 2017. The 255 revised full papers presented were carefully reviewed and selected from 800 submissions in a two-phase review process. The papers have been organized in the following topical sections: Part I: atlas and surface-based techniques; shape and patch-based techniques; registration techniques, functional imaging, connectivity, and brain parcellation; diffusion magnetic resonance imaging (dMRI) and tensor/fiber processing; and image segmentation and modelling. Part II: optical imaging; airway and vessel analysis; motion and cardiac analysis; tumor processing; planning and simulation for medical interventions; interventional imaging and navigation; and medical image computing. Part III: feature extraction and classification techniques; and machine learning in medical image computing.
Download or read book Biomedical Image Synthesis and Simulation written by Ninon Burgos and published by Academic Press. This book was released on 2022-06-18 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical Image Synthesis and Simulation: Methods and Applications presents the basic concepts and applications in image-based simulation and synthesis used in medical and biomedical imaging. The first part of the book introduces and describes the simulation and synthesis methods that were developed and successfully used within the last twenty years, from parametric to deep generative models. The second part gives examples of successful applications of these methods. Both parts together form a book that gives the reader insight into the technical background of image synthesis and how it is used, in the particular disciplines of medical and biomedical imaging. The book ends with several perspectives on the best practices to adopt when validating image synthesis approaches, the crucial role that uncertainty quantification plays in medical image synthesis, and research directions that should be worth exploring in the future. - Gives state-of-the-art methods in (bio)medical image synthesis - Explains the principles (background) of image synthesis methods - Presents the main applications of biomedical image synthesis methods
Download or read book Real Time Data Decisions With AI and ChatGPT Techniques written by Sharma, Priyanka and published by IGI Global. This book was released on 2024-09-19 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern businesses face the challenge of how to most effectively harness the power of Artificial Intelligence (AI) to enhance customer engagement and streamline operations. The proliferation of AI tools like ChatGPT offers immense potential. Yet, businesses often need help to navigate the complexities of implementation and maximize the benefits. This gap between AI's promise and its practical application highlights the need for a comprehensive resource that offers practical insights and innovative strategies. Real-Time Data Decisions With AI and ChatGPT Techniques is a groundbreaking book that addresses this critical challenge. By providing a detailed analysis of ChatGPT and other AI tools, this book equips businesses with the knowledge and strategies needed to leverage AI effectively. From algorithmic enhancements to real-world applications, each chapter offers valuable insights and actionable recommendations, making this book an indispensable guide for businesses seeking to capitalize on AI's transformative potential.
Download or read book Medical Image Registration written by Joseph V. Hajnal and published by CRC Press. This book was released on 2001-06-27 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Image registration is the process of systematically placing separate images in a common frame of reference so that the information they contain can be optimally integrated or compared. This is becoming the central tool for image analysis, understanding, and visualization in both medical and scientific applications. Medical Image Registration provid
Download or read book Deep Learning for Medical Image Analysis written by S. Kevin Zhou and published by Academic Press. This book was released on 2023-11-23 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache
Download or read book Data Engineering in Medical Imaging written by Binod Bhattarai and published by Springer Nature. This book was released on with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: