Download or read book Physical Combinatorics written by Masaki Kashiwara and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taking into account the various criss-crossing among mathematical subject, Physical Combinatorics presents new results and exciting ideas from three viewpoints; representation theory, integrable models, and combinatorics. This work is concerned with combinatorial aspects arising in the theory of exactly solvable models and representation theory. Recent developments in integrable models reveal an unexpected link between representation theory and statistical mechanics through combinatorics.
Download or read book Representations of Quantum Algebras and Combinatorics of Young Tableaux written by Susumu Ariki and published by American Mathematical Soc.. This book was released on 2002 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains most of the nonstandard material necessary to get acquainted with this new rapidly developing area. It can be used as a good entry point into the study of representations of quantum groups. Among several tools used in studying representations of quantum groups (or quantum algebras) are the notions of Kashiwara's crystal bases and Lusztig's canonical bases. Mixing both approaches allows us to use a combinatorial approach to representations of quantum groups and toapply the theory to representations of Hecke algebras. The primary goal of this book is to introduce the representation theory of quantum groups using quantum groups of type $A {r-1 {(1) $ as a main example. The corresponding combinatorics, developed by Misra and Miwa, turns out to be thecombinatorics of Young tableaux. The second goal of this book is to explain the proof of the (generalized) Leclerc-Lascoux-Thibon conjecture. This conjecture, which is now a theorem, is an important breakthrough in the modular representation theory of the Hecke algebras of classical type. The book is suitable for graduate students and research mathematicians interested in representation theory of algebraic groups and quantum groups, the theory of Hecke algebras, algebraic combinatorics, andrelated fields.
Download or read book Symmetric Functions 2001 Surveys of Developments and Perspectives written by Sergey Fomin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Study Institute, held in Cambridge, UK, from 25th June to 6th July, 2001
Download or read book Modular Representation Theory of Finite Groups written by Michael J. Collins and published by Walter de Gruyter. This book was released on 2011-07-11 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an outgrowth of a Research Symposium on the Modular Representation Theory of Finite Groups, held at the University of Virginia in May 1998. The main themes of this symposium were representations of groups of Lie type in nondefining (or cross) characteristic, and recent developments in block theory. Series of lectures were given by M. Geck, A. Kleshchev and R. Rouquier, and their brief was to present material at the leading edge of research but accessible to graduate students working in the field. The first three articles are substantial expansions of their lectures, and each provides a complete account of a significant area of the subject together with an extensive bibliography. The remaining articles are based on some of the other lectures given at the symposium; some again are full surveys of the topic covered while others are short, but complete, research articles. The opportunity has been taken to produce a book of enduring value so that this is not a conference proceedings in the conventional sense. Material has been updated so that this book, through its own content and in its extensive bibliographies, will serve as an invaluable resource for all those working in the area, whether established researchers or graduate students who wish to gain a general knowledge of the subject starting from a single source.
Download or read book Quantum Groups and Lie Theory written by Andrew Pressley and published by Cambridge University Press. This book was released on 2002-01-17 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises an overview of the material presented at the 1999 Durham Symposium on Quantum Groups and includes contributions from many of the world's leading figures in this area. It will be of interest to researchers and will also be useful as a reference text for graduate courses.
Download or read book Noncommutative Algebraic Geometry written by Gwyn Bellamy and published by Cambridge University Press. This book was released on 2016-06-20 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the interactions between noncommutative algebra and classical algebraic geometry.
Download or read book A Glimpse into Geometric Representation Theory written by Mahir Bilen Can and published by American Mathematical Society. This book was released on 2024-08-07 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on Combinatorial and Geometric Representation Theory, held virtually on November 20–21, 2021. The articles offer an engaging look into recent advancements in geometric representation theory. Despite diverse subject matters, a common thread uniting the articles of this volume is the power of geometric methods. The authors explore the following five contemporary topics in geometric representation theory: equivariant motivic Chern classes; equivariant Hirzebruch classes and equivariant Chern-Schwartz-MacPherson classes of Schubert cells; locally semialgebraic spaces, Nash manifolds, and their superspace counterparts; support varieties of Lie superalgebras; wreath Macdonald polynomials; and equivariant extensions and solutions of the Deligne-Simpson problem. Each article provides a well-structured overview of its topic, highlighting the emerging theories developed by the authors and their colleagues.
Download or read book Quantum Information IV written by Takeyuki Hida and published by World Scientific. This book was released on 2002 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation. ...study on the Power of Potential fluctuation in living cells...some properties of measure-valued processes with singular branching rate and other papers.
Download or read book Iwahori Hecke Algebras and Schur Algebras of the Symmetric Group written by Andrew Mathas and published by American Mathematical Soc.. This book was released on 1999 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a fully self-contained introduction to the modular representation theory of the Iwahori-Hecke algebras of the symmetric groups and of the $q$-Schur algebras. The study of these algebras was pioneered by Dipper and James in a series of landmark papers. The primary goal of the book is to classify the blocks and the simple modules of both algebras. The final chapter contains a survey of recent advances and open problems. The main results are proved by showing that the Iwahori-Hecke algebras and $q$-Schur algebras are cellular algebras (in the sense of Graham and Lehrer). This is proved by exhibiting natural bases of both algebras which are indexed by pairs of standard and semistandard tableaux respectively. Using the machinery of cellular algebras, which is developed in chapter 2, this results in a clean and elegant classification of the irreducible representations of both algebras. The block theory is approached by first proving an analogue of the Jantzen sum formula for the $q$-Schur algebras. This book is the first of its kind covering the topic. It offers a substantially simplified treatment of the original proofs. The book is a solid reference source for experts. It will also serve as a good introduction to students and beginning researchers since each chapter contains exercises and there is an appendix containing a quick development of the representation theory of algebras. A second appendix gives tables of decomposition numbers.
Download or read book Representation Theory of Algebraic Groups and Quantum Groups written by Akihiko Gyoja and published by Springer Science & Business Media. This book was released on 2010-11-25 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Invited articles by top notch experts Focus is on topics in representation theory of algebraic groups and quantum groups Of interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics
Download or read book Double Affine Hecke Algebras written by Ivan Cherednik and published by Cambridge University Press. This book was released on 2005-03-21 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an essentially self-contained monograph centered on the new double Hecke algebra technique.
Download or read book Representations of Hecke Algebras at Roots of Unity written by Meinolf Geck and published by Springer Science & Business Media. This book was released on 2011-05-18 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: The modular representation theory of Iwahori-Hecke algebras and this theory's connection to groups of Lie type is an area of rapidly expanding interest; it is one that has also seen a number of breakthroughs in recent years. In classifying the irreducible representations of Iwahori-Hecke algebras at roots of unity, this book is a particularly valuable addition to current research in this field. Using the framework provided by the Kazhdan-Lusztig theory of cells, the authors develop an analogue of James' (1970) "characteristic-free'' approach to the representation theory of Iwahori-Hecke algebras in general. Presenting a systematic and unified treatment of representations of Hecke algebras at roots of unity, this book is unique in its approach and includes new results that have not yet been published in book form. It also serves as background reading to further active areas of current research such as the theory of affine Hecke algebras and Cherednik algebras. The main results of this book are obtained by an interaction of several branches of mathematics, namely the theory of Fock spaces for quantum affine Lie algebras and Ariki's theorem, the combinatorics of crystal bases, the theory of Kazhdan-Lusztig bases and cells, and computational methods. This book will be of use to researchers and graduate students in representation theory as well as any researchers outside of the field with an interest in Hecke algebras.
Download or read book Combinatorial Methods in Representation Theory written by Kazuhiko Koike and published by . This book was released on 2000 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of papers written by the speakers of two international conferences held at the Research Institute for Mathematical Sciences (RIMS) at Kyoto University (Japan). Included are articles and surveys treating representations of (affine) Hecke algebras and affine Lie algebras, combinatorial properties of Kazhdan-Lusztig polynomials, crystals and Gelfand-Zetland bases for Lie (super) algebras, etc.
Download or read book Quantum Probability and Spectral Analysis of Graphs written by Akihito Hora and published by Springer Science & Business Media. This book was released on 2007-07-05 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to comprehensively cover quantum probabilistic approaches to spectral analysis of graphs, an approach developed by the authors. The book functions as a concise introduction to quantum probability from an algebraic aspect. Here readers will learn several powerful methods and techniques of wide applicability, recently developed under the name of quantum probability. The exercises at the end of each chapter help to deepen understanding.
Download or read book Statistical Physics On The Eve Of The 21st Century In Honour Of J B Mcguire On The Occasion Of His 65th Birthday written by Luc T Wille and published by World Scientific. This book was released on 1999-02-04 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of original papers and reviews in honour of James McGuire, one of the pioneers of integrable models in statistical physics. The broad range of articles offers a timely perspective on the current status of statistical mechanics, identifying both recent results as well as future challenges. The work contains a number of overviews of standard topics such as exactly solved lattice models and their various applications in statistical physics, from models of strongly correlated electrons to the conformational properties of polymer chains. It is equally wide ranging in its coverage of new directions and developing fields including quantum computers, financial markets, chaotic systems, Feigenbaum scaling, proteins, brain behaviour, immunology, Markov superposition, Bose-Einstein condensation, random matrices, exclusion statistics, vertex operator algebras and D-unsolvability.The level of coverage is appropriate for graduate students. It will be equally of interest to professional physicists who want to learn about progress in statistical physics in recent years. Experts will find this work useful because of its broad sweep of topics and its discussion of remaining unsolved problems.
Download or read book Introduction to Quantum Groups written by Masud Chaichian and published by World Scientific. This book was released on 1996 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade there has been an extemely rapid growth in the interest and development of quantum group theory.This book provides students and researchers with a practical introduction to the principal ideas of quantum groups theory and its applications to quantum mechanical and modern field theory problems. It begins with a review of, and introduction to, the mathematical aspects of quantum deformation of classical groups, Lie algebras and related objects (algebras of functions on spaces, differential and integral calculi). In the subsequent chapters the richness of mathematical structure and power of the quantum deformation methods and non-commutative geometry is illustrated on the different examples starting from the simplest quantum mechanical system — harmonic oscillator and ending with actual problems of modern field theory, such as the attempts to construct lattice-like regularization consistent with space-time Poincaré symmetry and to incorporate Higgs fields in the general geometrical frame of gauge theories. Graduate students and researchers studying the problems of quantum field theory, particle physics and mathematical aspects of quantum symmetries will find the book of interest.