Download or read book Decomposition and Invariance of Measures and Statistical Transformation Models written by Ole E Barndorff-Nielsen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Invariant Measures on Groups and Their Use in Statistics written by Robert A. Wijsman and published by IMS. This book was released on 1990 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Stochastic Models Statistical Methods and Algorithms in Image Analysis written by Piero Barone and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises a collection of papers by world- renowned experts on image analysis. The papers range from survey articles to research papers, and from theoretical topics such as simulated annealing through to applied image reconstruction. It covers applications as diverse as biomedicine, astronomy, and geophysics. As a result, any researcher working on image analysis will find this book provides an up-to-date overview of the field and in addition, the extensive bibliographies will make this a useful reference.
Download or read book Statistical Evaluation of Diagnostic Performance written by Kelly H. Zou and published by CRC Press. This book was released on 2016-04-19 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical evaluation of diagnostic performance in general and Receiver Operating Characteristic (ROC) analysis in particular are important for assessing the performance of medical tests and statistical classifiers, as well as for evaluating predictive models or algorithms. This book presents innovative approaches in ROC analysis, which are releva
Download or read book Model Oriented Design of Experiments written by Valerii V. Fedorov and published by Springer Science & Business Media. This book was released on 1997-06-20 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, the authors explain the basic ideas so as to generate interest in modern problems of experimental design. The topics discussed include designs for inference based on nonlinear models, designs for models with random parameters and stochastic processes, designs for model discrimination and incorrectly specified (contaminated) models, as well as examples of designs in functional spaces. Since the authors avoid technical details, the book assumes only a moderate background in calculus, matrix algebra, and statistics. However, at many places, hints are given as to how readers may enhance and adopt the basic ideas for advanced problems or applications. This allows the book to be used for courses at different levels, as well as serving as a useful reference for graduate students and researchers in statistics and engineering.
Download or read book A User s Guide to Measure Theoretic Probability written by David Pollard and published by Cambridge University Press. This book was released on 2002 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.
Download or read book Optimum Designs for Multi Factor Models written by Rainer Schwabe and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: In real applications most experimental situations are influenced by a large number of different factors. In these settings the design of an experiment leads to challenging optimization problems, even if the underlying relationship can be described by a linear model. Based on recent research, this book introduces the theory of optimum designs for complex models and develops general methods of reduction to marginal problems for large classes of models with relevant interaction structures.
Download or read book Latent Variable Modeling and Applications to Causality written by Maia Berkane and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers refereed papers presented at the 1994 UCLA conference on "La tent Variable Modeling and Application to Causality. " The meeting was organized by the UCLA Interdivisional Program in Statistics with the purpose of bringing together a group of people who have done recent advanced work in this field. The papers in this volume are representative of a wide variety of disciplines in which the use of latent variable models is rapidly growing. The volume is divided into two broad sections. The first section covers Path Models and Causal Reasoning and the papers are innovations from contributors in disciplines not traditionally associated with behavioural sciences, (e. g. computer science with Judea Pearl and public health with James Robins). Also in this section are contri butions by Rod McDonald and Michael Sobel who have a more traditional approach to causal inference, generating from problems in behavioural sciences. The second section encompasses new approaches to questions of model selection with emphasis on factor analysis and time varying systems. Amemiya uses nonlinear factor analysis which has a higher order of complexity associated with the identifiability condi tions. Muthen studies longitudinal hierarchichal models with latent variables and treats the time vector as a variable rather than a level of hierarchy. Deleeuw extends exploratory factor analysis models by including time as a variable and allowing for discrete and ordi nal latent variables. Arminger looks at autoregressive structures and Bock treats factor analysis models for categorical data.
Download or read book Applications of Computer Aided Time Series Modeling written by Masanao Aoki and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of three parts: Part One is composed of two introductory chapters. The first chapter provides an instrumental varible interpretation of the state space time series algorithm originally proposed by Aoki (1983), and gives an introductory account for incorporating exogenous signals in state space models. The second chapter, by Havenner, gives practical guidance in apply ing this algorithm by one of the most experienced practitioners of the method. Havenner begins by summarizing six reasons state space methods are advanta geous, and then walks the reader through construction and evaluation of a state space model for four monthly macroeconomic series: industrial production in dex, consumer price index, six month commercial paper rate, and money stock (Ml). To single out one of the several important insights in modeling that he shares with the reader, he discusses in Section 2ii the effects of sampling er rors and model misspecification on successful modeling efforts. He argues that model misspecification is an important amplifier of the effects of sampling error that may cause symplectic matrices to have complex unit roots, a theoretical impossibility. Correct model specifications increase efficiency of estimators and often eliminate this finite sample problem. This is an important insight into the positive realness of covariance matrices; positivity has been emphasized by system engineers to the exclusion of other methods of reducing sampling error and alleviating what is simply a finite sample problem. The second and third parts collect papers that describe specific applications.
Download or read book Wavelets Approximation and Statistical Applications written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mathematical theory of ondelettes (wavelets) was developed by Yves Meyer and many collaborators about 10 years ago. It was designed for ap proximation of possibly irregular functions and surfaces and was successfully applied in data compression, turbulence analysis, image and signal process ing. Five years ago wavelet theory progressively appeared to be a power ful framework for nonparametric statistical problems. Efficient computa tional implementations are beginning to surface in this second lustrum of the nineties. This book brings together these three main streams of wavelet theory. It presents the theory, discusses approximations and gives a variety of statistical applications. It is the aim of this text to introduce the novice in this field into the various aspects of wavelets. Wavelets require a highly interactive computing interface. We present therefore all applications with software code from an interactive statistical computing environment. Readers interested in theory and construction of wavelets will find here in a condensed form results that are somewhat scattered around in the research literature. A practioner will be able to use wavelets via the available software code. We hope therefore to address both theory and practice with this book and thus help to construct bridges between the different groups of scientists. This te. xt grew out of a French-German cooperation (Seminaire Paris Berlin, Seminar Berlin-Paris). This seminar brings together theoretical and applied statisticians from Berlin and Paris. This work originates in the first of these seminars organized in Garchy, Burgundy in 1994.
Download or read book Case Studies in Bayesian Statistics written by Constantine Gatsonis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third volume of case studies presents detailed applications of Bayesian statistical analysis, emphasising the scientific context. The papers were presented and discussed at a workshop held at Carnegie-Mellon University, and this volume - dedicated to the memory of Morrie Groot-reproduces six invited papers, each with accompanying invited discussion, and nine contributed papers with the focus on econometric applications.
Download or read book Monte Carlo and Quasi Monte Carlo Methods 1996 written by Harald Niederreiter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are numerical methods based on random sampling and quasi-Monte Carlo methods are their deterministic versions. This volume contains the refereed proceedings of the Second International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing which was held at the University of Salzburg (Austria) from July 9--12, 1996. The conference was a forum for recent progress in the theory and the applications of these methods. The topics covered in this volume range from theoretical issues in Monte Carlo and simulation methods, low-discrepancy point sets and sequences, lattice rules, and pseudorandom number generation to applications such as numerical integration, numerical linear algebra, integral equations, binary search, global optimization, computational physics, mathematical finance, and computer graphics. These proceedings will be of interest to graduate students and researchers in Monte Carlo and quasi-Monte Carlo methods, to numerical analysts, and to practitioners of simulation methods.
Download or read book Principles of Statistical Inference written by Luigi Pace and published by World Scientific. This book was released on 1997-08-05 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, an integrated introduction to statistical inference is provided from a frequentist likelihood-based viewpoint. Classical results are presented together with recent developments, largely built upon ideas due to R.A. Fisher. The term ?neo-Fisherian? highlights this.After a unified review of background material (statistical models, likelihood, data and model reduction, first-order asymptotics) and inference in the presence of nuisance parameters (including pseudo-likelihoods), a self-contained introduction is given to exponential families, exponential dispersion models, generalized linear models, and group families. Finally, basic results of higher-order asymptotics are introduced (index notation, asymptotic expansions for statistics and distributions, and major applications to likelihood inference).The emphasis is more on general concepts and methods than on regularity conditions. Many examples are given for specific statistical models. Each chapter is supplemented with problems and bibliographic notes. This volume can serve as a textbook in intermediate-level undergraduate and postgraduate courses in statistical inference.
Download or read book Wavelets and Statistics written by Anestis Antoniadis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite its short history, wavelet theory has found applications in a remarkable diversity of disciplines: mathematics, physics, numerical analysis, signal processing, probability theory and statistics. The abundance of intriguing and useful features enjoyed by wavelet and wavelet packed transforms has led to their application to a wide range of statistical and signal processing problems. On November 16-18, 1994, a conference on Wavelets and Statistics was held at Villard de Lans, France, organized by the Institute IMAG-LMC, Grenoble, France. The meeting was the 15th in the series of the Rencontres Pranco-Belges des 8tatisticiens and was attended by 74 mathematicians from 12 different countries. Following tradition, both theoretical statistical results and practical contributions of this active field of statistical research were presented. The editors and the local organizers hope that this volume reflects the broad spectrum of the conference. as it includes 21 articles contributed by specialists in various areas in this field. The material compiled is fairly wide in scope and ranges from the development of new tools for non parametric curve estimation to applied problems, such as detection of transients in signal processing and image segmentation. The articles are arranged in alphabetical order by author rather than subject matter. However, to help the reader, a subjective classification of the articles is provided at the end of the book. Several articles of this volume are directly or indirectly concerned with several as pects of wavelet-based function estimation and signal denoising.
Download or read book The Statistical Theory of Shape written by Christopher G. Small and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: In general terms, the shape of an object, data set, or image can be de fined as the total of all information that is invariant under translations, rotations, and isotropic rescalings. Thus two objects can be said to have the same shape if they are similar in the sense of Euclidean geometry. For example, all equilateral triangles have the same shape, and so do all cubes. In applications, bodies rarely have exactly the same shape within measure ment error. In such cases the variation in shape can often be the subject of statistical analysis. The last decade has seen a considerable growth in interest in the statis tical theory of shape. This has been the result of a synthesis of a number of different areas and a recognition that there is considerable common ground among these areas in their study of shape variation. Despite this synthesis of disciplines, there are several different schools of statistical shape analysis. One of these, the Kendall school of shape analysis, uses a variety of mathe matical tools from differential geometry and probability, and is the subject of this book. The book does not assume a particularly strong background by the reader in these subjects, and so a brief introduction is provided to each of these topics. Anyone who is unfamiliar with this material is advised to consult a more complete reference. As the literature on these subjects is vast, the introductory sections can be used as a brief guide to the literature.
Download or read book Tools for Statistical Inference written by Martin A. Tanner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: The purpose of the book under review is to give a survey of methods for the Bayesian or likelihood-based analysis of data. The author distinguishes between two types of methods: the observed data methods and the data augmentation ones. The observed data methods are applied directly to the likelihood or posterior density of the observed data. The data augmentation methods make use of the special "missing" data structure of the problem. They rely on an augmentation of the data which simplifies the likelihood or posterior density. #Zentralblatt für Mathematik#
Download or read book Principles Of Statistical Inference From A Neo fisherian Perspective written by Luigi Pace and published by World Scientific Publishing Company. This book was released on 1997-08-05 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, an integrated introduction to statistical inference is provided from a frequentist likelihood-based viewpoint. Classical results are presented together with recent developments, largely built upon ideas due to R.A. Fisher. The term “neo-Fisherian” highlights this.After a unified review of background material (statistical models, likelihood, data and model reduction, first-order asymptotics) and inference in the presence of nuisance parameters (including pseudo-likelihoods), a self-contained introduction is given to exponential families, exponential dispersion models, generalized linear models, and group families. Finally, basic results of higher-order asymptotics are introduced (index notation, asymptotic expansions for statistics and distributions, and major applications to likelihood inference).The emphasis is more on general concepts and methods than on regularity conditions. Many examples are given for specific statistical models. Each chapter is supplemented with problems and bibliographic notes. This volume can serve as a textbook in intermediate-level undergraduate and postgraduate courses in statistical inference.