EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Decision Rule Approximations for Dynamic Optimization Under Uncertainty

Download or read book Decision Rule Approximations for Dynamic Optimization Under Uncertainty written by Phebe Theofano Vayanos and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic decision problems affected by uncertain data are notoriously hard to solve due to the presence of adaptive decision variables which must be modeled as functions or decision rules of some (or all) of the uncertain parameters. All exact solution techniques suffer from the curse of dimensionality while most solution schemes assume that the decision-maker cannot influence the sequence in which the uncertain parameters are revealed. The main objective of this thesis is to devise tractable approximation schemes for dynamic decision-making under uncertainty. For this purpose, we develop new decision rule approximations whereby the adaptive decisions are approximated by finite linear combinations of prescribed basis functions. In the first part of this thesis, we develop a tractable unifying framework for solving convex multi-stage robust optimization problems with general nonlinear dependence on the uncertain parameters. This is achieved by combining decision rule and constraint sampling approximations. The synthesis of these two methodologies provides us with a versatile data-driven framework, which circumvents the need for estimating the distribution of the uncertain parameters and offers almost complete freedom in the choice of basis functions. We obtain a-priori probabilistic guarantees on the feasibility properties of the optimal decision rule and demonstrate asymptotic consistency of the approximation. We then investigate the problem of hedging and pricing path-dependent electricity derivatives such as swing options, which play a crucial risk management role in today's deregulated energy markets. Most of the literature on the topic assumes that a swing option can be assigned a unique fair price. This assumption nevertheless fails to hold in real-world energy markets, where the option admits a whole interval of prices consistent with those of traded instruments. We formulate two large-scale robust optimization problems whose optimal values yield the endpoints of this interval. We analyze and exploit the structure of the optimal decision rule to formulate approximate problems that can be solved efficiently with the decision rule approach discussed in the first part of the thesis. Most of the literature on stochastic and robust optimization assumes that the sequence in which the uncertain parameters unfold is independent of the decision-maker's actions. Nevertheless, in numerous real-world decision problems, the time of information discovery can be influenced by the decision-maker. In the last part of this thesis, we propose a decision rule-based approximation scheme for multi-stage problems with decision-dependent information discovery. We assess our approach on a problem of infrastructure and production planning in offshore oil fields.

Book The Decision Rule Approach to Optimisation Under Uncertainty

Download or read book The Decision Rule Approach to Optimisation Under Uncertainty written by Angelos Georghiou and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimisation under uncertainty has a long and distinguished history in operations research. Decision-makers realised early on that the failure to account for uncertainty in optimisation problems can lead to substantial unexpected losses or even infeasible solutions. Therefore, approximating the uncertain parameters by their average or nominal values may result in decisions that perform poorly in scenarios that deviate from the average. For the last sixty years, scenario tree-based stochastic programming has been the method of choice for solving optimisation problems affected by parameter uncertainty. This method approximates the random problem parameters by finite scenarios that can be arranged as a tree. Unfortunately, this approximation suffers from a curse of dimensionality: the tree needs to branch whenever new uncertainties are revealed, and thus its size grows exponentially with the number of decision stages. It has recently been argued that stochastic programs can quite generally be made tractable by restricting the space of recourse decisions to those that exhibit a linear data dependence. An attractive feature of this linear decision rule approximation is that it typically leads to polynomial-time solution schemes. Unfortunately, the simple structure of linear decision rules sacrifices optimality in return for scalability. The worst-case performance of linear decision rules is in fact rather disappointing. When applied to two-stage robust optimisation problems with m linear constraints, the underlying worst-case approximation ratio has been shown to be of the order O(√m). Therefore, in this thesis we endeavour to construct efficiently computable instance-wise bounds on the loss of optimality incurred by the linear decision rule approximation. The contributions of this thesis are as follows. (i)We develop an efficient algorithm for assessing the loss of optimality incurred by the linear decision rule approximation. The key idea is to apply the linear decision rule restriction not only to the primal but also to a dual version of the stochastic program. Since both problems share a similar structure, both problems can be solved in polynomial-time. The gap between their optimal values estimates the loss of optimality incurred by the linear decision rule approximation. (ii) We design an improved approximation based on non-linear decision rules, which can be useful if the optimality gap of the linear decision rules is deemed unacceptably high. The idea takes advantage of the fact that one can always map a linearly parameterised non-linear function into a higher dimensional space, where it can be represented as a linear function. This allows us to utilise the machinery developed for linear decision rules to produce superior quality approximations that can be obtained in polynomial time. (iii) We assess the performance of the approximations developed in two operations management problems: a production planning problem and a supply chain design problem. We show that near-optimal solutions can be found in problem instances with many stages and random parameters. We additionally compare the quality of the decision rule approximation with classical approximation techniques. (iv) We develop a systematic approach to reformulate multi-stage stochastic programs with a large (possibly infinite) number of stages as static robust optimisation problem that can be solved with a constraint sampling technique. The method is motivated via an investment planning problem in the electricity industry.

Book Approximate Dynamic Programming

Download or read book Approximate Dynamic Programming written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2007-10-05 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.

Book Robust Optimization

    Book Details:
  • Author : Aharon Ben-Tal
  • Publisher : Princeton University Press
  • Release : 2009-08-10
  • ISBN : 1400831059
  • Pages : 565 pages

Download or read book Robust Optimization written by Aharon Ben-Tal and published by Princeton University Press. This book was released on 2009-08-10 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.

Book Lectures on Stochastic Programming

Download or read book Lectures on Stochastic Programming written by Alexander Shapiro and published by SIAM. This book was released on 2009-01-01 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.

Book Optimal Decisions Under Uncertainty

Download or read book Optimal Decisions Under Uncertainty written by J.K. Sengupta and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the stochastic enviornment is as much important to the manager as to the economist. From production and marketing to financial management, a manager has to assess various costs imposed by uncertainty. The economist analyzes the role of incomplete and too often imperfect information structures on the optimal decisions made by a firm. The need for understanding the role of uncertainty in quantitative decision models, both in economics and management science provide the basic motivation of this monograph. The stochastic environment is analyzed here in terms of the following specific models of optimization: linear and quadratic models, linear programming, control theory and dynamic programming. Uncertainty is introduced here through the para meters, the constraints, and the objective function and its impact evaluated. Specifically recent developments in applied research are emphasized, so that they can help the decision-maker arrive at a solution which has some desirable charac teristics like robustness, stability and cautiousness. Mathematical treatment is kept at a fairly elementary level and applied as pects are emphasized much more than theory. Moreover, an attempt is made to in corporate the economic theory of uncertainty into the stochastic theory of opera tions research. Methods of optimal decision rules illustrated he re are applicable in three broad areas: (a) applied economic models in resource allocation and economic planning, (b) operations research models involving portfolio analysis and stochastic linear programming and (c) systems science models in stochastic control and adaptive behavior.

Book Polynomial Approximations for Infinite dimensional Optimization Problems

Download or read book Polynomial Approximations for Infinite dimensional Optimization Problems written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Reinforcement Learning and Stochastic Optimization

Download or read book Reinforcement Learning and Stochastic Optimization written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2022-04-25 with total page 1090 pages. Available in PDF, EPUB and Kindle. Book excerpt: REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.

Book Optimization of Temporal Networks under Uncertainty

Download or read book Optimization of Temporal Networks under Uncertainty written by Wolfram Wiesemann and published by Springer Science & Business Media. This book was released on 2012-01-05 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many decision problems in Operations Research are defined on temporal networks, that is, workflows of time-consuming tasks whose processing order is constrained by precedence relations. For example, temporal networks are used to model projects, computer applications, digital circuits and production processes. Optimization problems arise in temporal networks when a decision maker wishes to determine a temporal arrangement of the tasks and/or a resource assignment that optimizes some network characteristic (e.g. the time required to complete all tasks). The parameters of these optimization problems (e.g. the task durations) are typically unknown at the time the decision problem arises. This monograph investigates solution techniques for optimization problems in temporal networks that explicitly account for this parameter uncertainty. We study several formulations, each of which requires different information about the uncertain problem parameters.

Book Decision Making Under Uncertainty

Download or read book Decision Making Under Uncertainty written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2015-07-24 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Book Optimal Financial Decision Making under Uncertainty

Download or read book Optimal Financial Decision Making under Uncertainty written by Giorgio Consigli and published by Springer. This book was released on 2016-10-17 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scope of this volume is primarily to analyze from different methodological perspectives similar valuation and optimization problems arising in financial applications, aimed at facilitating a theoretical and computational integration between methods largely regarded as alternatives. Increasingly in recent years, financial management problems such as strategic asset allocation, asset-liability management, as well as asset pricing problems, have been presented in the literature adopting formulation and solution approaches rooted in stochastic programming, robust optimization, stochastic dynamic programming (including approximate SDP) methods, as well as policy rule optimization, heuristic approaches and others. The aim of the volume is to facilitate the comprehension of the modeling and methodological potentials of those methods, thus their common assumptions and peculiarities, relying on similar financial problems. The volume will address different valuation problems common in finance related to: asset pricing, optimal portfolio management, risk measurement, risk control and asset-liability management. The volume features chapters of theoretical and practical relevance clarifying recent advances in the associated applied field from different standpoints, relying on similar valuation problems and, as mentioned, facilitating a mutual and beneficial methodological and theoretical knowledge transfer. The distinctive aspects of the volume can be summarized as follows: Strong benchmarking philosophy, with contributors explicitly asked to underline current limits and desirable developments in their areas. Theoretical contributions, aimed at advancing the state-of-the-art in the given domain with a clear potential for applications The inclusion of an algorithmic-computational discussion of issues arising on similar valuation problems across different methods. Variety of applications: rarely is it possible within a single volume to consider and analyze different, and possibly competing, alternative optimization techniques applied to well-identified financial valuation problems. Clear definition of the current state-of-the-art in each methodological and applied area to facilitate future research directions.

Book Modern Optimization Methods for Decision Making Under Risk and Uncertainty

Download or read book Modern Optimization Methods for Decision Making Under Risk and Uncertainty written by Alexei A. Gaivoronski and published by CRC Press. This book was released on 2023-10-06 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book comprises original articles on topical issues of risk theory, rational decision making, statistical decisions, and control of stochastic systems. The articles are the outcome of a series international projects involving the leading scholars in the field of modern stochastic optimization and decision making. The structure of stochastic optimization solvers is described. The solvers in general implement stochastic quasi-gradient methods for optimization and identification of complex nonlinear models. These models constitute an important methodology for finding optimal decisions under risk and uncertainty. While a large part of current approaches towards optimization under uncertainty stems from linear programming (LP) and often results in large LPs of special structure, stochastic quasi-gradient methods confront nonlinearities directly without need of linearization. This makes them an appropriate tool for solving complex nonlinear problems, concurrent optimization and simulation models, and equilibrium situations of different types, for instance, Nash or Stackelberg equilibrium situations. The solver finds the equilibrium solution when the optimization model describes the system with several actors. The solver is parallelizable, performing several simulation threads in parallel. It is capable of solving stochastic optimization problems, finding stochastic Nash equilibria, and of composite stochastic bilevel problems where each level may require the solution of stochastic optimization problem or finding Nash equilibrium. Several complex examples with applications to water resources management, energy markets, pricing of services on social networks are provided. In the case of power system, regulator makes decision on the final expansion plan, considering the strategic behavior of regulated companies and coordinating the interests of different economic entities. Such a plan can be an equilibrium − a planned decision where a company cannot increase its expected gain unilaterally.

Book Dynamic Optimization  Second Edition

Download or read book Dynamic Optimization Second Edition written by Morton I. Kamien and published by Courier Corporation. This book was released on 2013-04-17 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.

Book Mathematical Programming The State of the Art

Download or read book Mathematical Programming The State of the Art written by A. Bachem and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the late forties, Mathematical Programming became a scientific discipline in its own right. Since then it has experienced a tremendous growth. Beginning with economic and military applications, it is now among the most important fields of applied mathematics with extensive use in engineering, natural sciences, economics, and biological sciences. The lively activity in this area is demonstrated by the fact that as early as 1949 the first "Symposium on Mathe matical Programming" took place in Chicago. Since then mathematical programmers from all over the world have gath ered at the intfrnational symposia of the Mathematical Programming Society roughly every three years to present their recent research, to exchange ideas with their colleagues and to learn about the latest developments in their own and related fields. In 1982, the XI. International Symposium on Mathematical Programming was held at the University of Bonn, W. Germany, from August 23 to 27. It was organized by the Institut fUr Okonometrie und Operations Re search of the University of Bonn in collaboration with the Sonderforschungs bereich 21 of the Deutsche Forschungsgemeinschaft. This volume constitutes part of the outgrowth of this symposium and docu ments its scientific activities. Part I of the book contains information about the symposium, welcoming addresses, lists of committees and sponsors and a brief review about the Ful kerson Prize and the Dantzig Prize which were awarded during the opening ceremony.

Book Robust Discrete Optimization and Its Applications

Download or read book Robust Discrete Optimization and Its Applications written by Panos Kouvelis and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with decision making in environments of significant data un certainty, with particular emphasis on operations and production management applications. For such environments, we suggest the use of the robustness ap proach to decision making, which assumes inadequate knowledge of the decision maker about the random state of nature and develops a decision that hedges against the worst contingency that may arise. The main motivating factors for a decision maker to use the robustness approach are: • It does not ignore uncertainty and takes a proactive step in response to the fact that forecasted values of uncertain parameters will not occur in most environments; • It applies to decisions of unique, non-repetitive nature, which are common in many fast and dynamically changing environments; • It accounts for the risk averse nature of decision makers; and • It recognizes that even though decision environments are fraught with data uncertainties, decisions are evaluated ex post with the realized data. For all of the above reasons, robust decisions are dear to the heart of opera tional decision makers. This book takes a giant first step in presenting decision support tools and solution methods for generating robust decisions in a variety of interesting application environments. Robust Discrete Optimization is a comprehensive mathematical programming framework for robust decision making.

Book A General Solution for Linear Decision Rules

Download or read book A General Solution for Linear Decision Rules written by George Alan Hay and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear decision rules for controlling complex systems are often obtained by matrix inversion, but transform methods offer an alternative approach that yields insights into the structure of the decision problem of maximizing expected payoffs under constrains.