Download or read book Decision Forests for Computer Vision and Medical Image Analysis written by Antonio Criminisi and published by Springer Science & Business Media. This book was released on 2013-01-30 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.
Download or read book Decision Forests written by Antonio Criminisi and published by Foundations and Trends(r) in C. This book was released on 2012-03 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a unified, efficient model of random decision forests which can be used in a number of applications such as scene recognition from photographs, object recognition in images, automatic diagnosis from radiological scans and document analysis.
Download or read book Decision Trees and Random Forests written by Mark Koning and published by Independently Published. This book was released on 2017-10-04 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you want to learn how decision trees and random forests work, plus create your own, this visual book is for you. The fact is, decision tree and random forest algorithms are powerful and likely touch your life everyday. From online search to product development and credit scoring, both types of algorithms are at work behind the scenes in many modern applications and services. They are also used in countless industries such as medicine, manufacturing and finance to help companies make better decisions and reduce risk. Whether coded or scratched out by hand, both algorithms are powerful tools that can make a significant impact. This book is a visual introduction for beginners that unpacks the fundamentals of decision trees and random forests. If you want to dig into the basics with a visual twist plus create your own algorithms in Python, this book is for you.
Download or read book Tree based Machine Learning Algorithms written by Clinton Sheppard and published by Createspace Independent Publishing Platform. This book was released on 2017-09-09 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Learn how to use decision trees and random forests for classification and regression, their respective limitations, and how the algorithms that build them work. Each chapter introduces a new data concern and then walks you through modifying the code, thus building the engine just-in-time. Along the way you will gain experience making decision trees and random forests work for you."--Back cover.
Download or read book Advanced Analytics with Spark written by Sandy Ryza and published by "O'Reilly Media, Inc.". This book was released on 2015-04-02 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. You’ll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques—classification, collaborative filtering, and anomaly detection among others—to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you’ll find these patterns useful for working on your own data applications. Patterns include: Recommending music and the Audioscrobbler data set Predicting forest cover with decision trees Anomaly detection in network traffic with K-means clustering Understanding Wikipedia with Latent Semantic Analysis Analyzing co-occurrence networks with GraphX Geospatial and temporal data analysis on the New York City Taxi Trips data Estimating financial risk through Monte Carlo simulation Analyzing genomics data and the BDG project Analyzing neuroimaging data with PySpark and Thunder
Download or read book Computational Genomics with R written by Altuna Akalin and published by CRC Press. This book was released on 2020-12-16 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.
Download or read book Condition Monitoring with Vibration Signals written by Hosameldin Ahmed and published by John Wiley & Sons. This book was released on 2020-01-07 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an extensive, up-to-date treatment of techniques used for machine condition monitoring Clear and concise throughout, this accessible book is the first to be wholly devoted to the field of condition monitoring for rotating machines using vibration signals. It covers various feature extraction, feature selection, and classification methods as well as their applications to machine vibration datasets. It also presents new methods including machine learning and compressive sampling, which help to improve safety, reliability, and performance. Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines starts by introducing readers to Vibration Analysis Techniques and Machine Condition Monitoring (MCM). It then offers readers sections covering: Rotating Machine Condition Monitoring using Learning Algorithms; Classification Algorithms; and New Fault Diagnosis Frameworks designed for MCM. Readers will learn signal processing in the time-frequency domain, methods for linear subspace learning, and the basic principles of the learning method Artificial Neural Network (ANN). They will also discover recent trends of deep learning in the field of machine condition monitoring, new feature learning frameworks based on compressive sampling, subspace learning techniques for machine condition monitoring, and much more. Covers the fundamental as well as the state-of-the-art approaches to machine condition monitoringguiding readers from the basics of rotating machines to the generation of knowledge using vibration signals Provides new methods, including machine learning and compressive sampling, which offer significant improvements in accuracy with reduced computational costs Features learning algorithms that can be used for fault diagnosis and prognosis Includes previously and recently developed dimensionality reduction techniques and classification algorithms Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines is an excellent book for research students, postgraduate students, industrial practitioners, and researchers.
Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Download or read book TensorFlow Machine Learning Projects written by Ankit Jain and published by Packt Publishing Ltd. This book was released on 2018-11-30 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement TensorFlow's offerings such as TensorBoard, TensorFlow.js, TensorFlow Probability, and TensorFlow Lite to build smart automation projects Key FeaturesUse machine learning and deep learning principles to build real-world projectsGet to grips with TensorFlow's impressive range of module offeringsImplement projects on GANs, reinforcement learning, and capsule networkBook Description TensorFlow has transformed the way machine learning is perceived. TensorFlow Machine Learning Projects teaches you how to exploit the benefits—simplicity, efficiency, and flexibility—of using TensorFlow in various real-world projects. With the help of this book, you’ll not only learn how to build advanced projects using different datasets but also be able to tackle common challenges using a range of libraries from the TensorFlow ecosystem. To start with, you’ll get to grips with using TensorFlow for machine learning projects; you’ll explore a wide range of projects using TensorForest and TensorBoard for detecting exoplanets, TensorFlow.js for sentiment analysis, and TensorFlow Lite for digit classification. As you make your way through the book, you’ll build projects in various real-world domains, incorporating natural language processing (NLP), the Gaussian process, autoencoders, recommender systems, and Bayesian neural networks, along with trending areas such as Generative Adversarial Networks (GANs), capsule networks, and reinforcement learning. You’ll learn how to use the TensorFlow on Spark API and GPU-accelerated computing with TensorFlow to detect objects, followed by how to train and develop a recurrent neural network (RNN) model to generate book scripts. By the end of this book, you’ll have gained the required expertise to build full-fledged machine learning projects at work. What you will learnUnderstand the TensorFlow ecosystem using various datasets and techniquesCreate recommendation systems for quality product recommendationsBuild projects using CNNs, NLP, and Bayesian neural networksPlay Pac-Man using deep reinforcement learningDeploy scalable TensorFlow-based machine learning systemsGenerate your own book script using RNNsWho this book is for TensorFlow Machine Learning Projects is for you if you are a data analyst, data scientist, machine learning professional, or deep learning enthusiast with basic knowledge of TensorFlow. This book is also for you if you want to build end-to-end projects in the machine learning domain using supervised, unsupervised, and reinforcement learning techniques
Download or read book Machine Learning with Python Cookbook written by Chris Albon and published by "O'Reilly Media, Inc.". This book was released on 2018-03-09 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models
Download or read book Advancing the Investigation and Treatment of Sleep Disorders Using AI written by Kumar, M. Rajesh and published by IGI Global. This book was released on 2021-06-25 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are more than 80 different sleep disorders including insomnia, sleep apnea, restless leg syndrome, hypersomnia, circadian rhythm disorders, and parasomnia. Good sleep is necessary for optimal health and can affect hormone levels and weight. The use of artificial intelligence (AI) and biomedical signals and images can help in healthcare diagnostics that are related to these and other sleep disorders. Advancing the Investigation and Treatment of Sleep Disorders Using AI presents an overview of sleep disorders based on machine intelligence methods in order to learn and explore the latest advancements, developments, methods, systems, futuristic approaches, and algorithms towards sleep disorders and to address their challenges. This book also discusses recent and future advancements in various feature extraction techniques and machine learning methods. Covering topics such as biomedical signal processing, augmented reality for clinical investigation, and sleep disorder detection, this book is essential for sleep medicine practitioners, clinical psychologists, psychiatrists, medical technologists, doctors, IT specialists, biomedical engineers, researchers, graduate students, and academicians.
Download or read book Why Forests Why Now written by Frances Seymour and published by Brookings Institution Press. This book was released on 2016-12-27 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tropical forests are an undervalued asset in meeting the greatest global challenges of our time—averting climate change and promoting development. Despite their importance, tropical forests and their ecosystems are being destroyed at a high and even increasing rate in most forest-rich countries. The good news is that the science, economics, and politics are aligned to support a major international effort over the next five years to reverse tropical deforestation. Why Forests? Why Now? synthesizes the latest evidence on the importance of tropical forests in a way that is accessible to anyone interested in climate change and development and to readers already familiar with the problem of deforestation. It makes the case to decisionmakers in rich countries that rewarding developing countries for protecting their forests is urgent, affordable, and achievable.
Download or read book Machine Learning and Security written by Clarence Chio and published by "O'Reilly Media, Inc.". This book was released on 2018-01-26 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions
Download or read book Random Forests with R written by Robin Genuer and published by Springer Nature. This book was released on 2020-09-10 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an application-oriented guide to random forests: a statistical learning method extensively used in many fields of application, thanks to its excellent predictive performance, but also to its flexibility, which places few restrictions on the nature of the data used. Indeed, random forests can be adapted to both supervised classification problems and regression problems. In addition, they allow us to consider qualitative and quantitative explanatory variables together, without pre-processing. Moreover, they can be used to process standard data for which the number of observations is higher than the number of variables, while also performing very well in the high dimensional case, where the number of variables is quite large in comparison to the number of observations. Consequently, they are now among the preferred methods in the toolbox of statisticians and data scientists. The book is primarily intended for students in academic fields such as statistical education, but also for practitioners in statistics and machine learning. A scientific undergraduate degree is quite sufficient to take full advantage of the concepts, methods, and tools discussed. In terms of computer science skills, little background knowledge is required, though an introduction to the R language is recommended. Random forests are part of the family of tree-based methods; accordingly, after an introductory chapter, Chapter 2 presents CART trees. The next three chapters are devoted to random forests. They focus on their presentation (Chapter 3), on the variable importance tool (Chapter 4), and on the variable selection problem (Chapter 5), respectively. After discussing the concepts and methods, we illustrate their implementation on a running example. Then, various complements are provided before examining additional examples. Throughout the book, each result is given together with the code (in R) that can be used to reproduce it. Thus, the book offers readers essential information and concepts, together with examples and the software tools needed to analyse data using random forests.
Download or read book AI 2003 Advances in Artificial Intelligence written by Tamas D. Gedeon and published by Springer. This book was released on 2003-12-01 with total page 1095 pages. Available in PDF, EPUB and Kindle. Book excerpt: Consider the problem of a robot (algorithm, learning mechanism) moving along the real line attempting to locate a particular point ? . To assist the me- anism, we assume that it can communicate with an Environment (“Oracle”) which guides it with information regarding the direction in which it should go. If the Environment is deterministic the problem is the “Deterministic Point - cation Problem” which has been studied rather thoroughly [1]. In its pioneering version [1] the problem was presented in the setting that the Environment could charge the robot a cost which was proportional to the distance it was from the point sought for. The question of having multiple communicating robots locate a point on the line has also been studied [1, 2]. In the stochastic version of this problem, we consider the scenario when the learning mechanism attempts to locate a point in an interval with stochastic (i. e. , possibly erroneous) instead of deterministic responses from the environment. Thus when it should really be moving to the “right” it may be advised to move to the “left” and vice versa. Apart from the problem being of importance in its own right, the stoch- tic pointlocationproblemalsohas potentialapplications insolvingoptimization problems. Inmanyoptimizationsolutions–forexampleinimageprocessing,p- tern recognition and neural computing [5, 9, 11, 12, 14, 16, 19], the algorithm worksits wayfromits currentsolutionto the optimalsolutionbasedoninfor- tion that it currentlyhas. A crucialquestionis oneof determining the parameter whichtheoptimizationalgorithmshoulduse.
Download or read book The Dark Forest written by Cixin Liu and published by Tor Books. This book was released on 2015-08-11 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: The inspiration for the Netflix series 3 Body Problem! Over 1 million copies of the Three-Body Problem series sold in North America PRAISE FOR THE THREE-BODY PROBLEM SERIES: “A mind-bending epic.”—The New York Times • “War of the Worlds for the 21st century.”—The Wall Street Journal • “Fascinating.”—TIME • “Extraordinary.”—The New Yorker • “Wildly imaginative.”—Barack Obama • “Provocative.”—Slate • “A breakthrough book.”—George R. R. Martin • “Impossible to put down.”—GQ • “Absolutely mind-unfolding.”—NPR • “You should be reading Liu Cixin.”—The Washington Post The Dark Forest is the second novel in the groundbreaking, Hugo Award-winning series from China's most beloved science fiction author, Cixin Liu. In The Dark Forest, Earth is reeling from the revelation of a coming alien invasion-in just four centuries' time. The aliens' human collaborators may have been defeated, but the presence of the sophons, the subatomic particles that allow Trisolaris instant access to all human information, means that Earth's defense plans are totally exposed to the enemy. Only the human mind remains a secret. This is the motivation for the Wallfacer Project, a daring plan that grants four men enormous resources to design secret strategies, hidden through deceit and misdirection from Earth and Trisolaris alike. Three of the Wallfacers are influential statesmen and scientists, but the fourth is a total unknown. Luo Ji, an unambitious Chinese astronomer and sociologist, is baffled by his new status. All he knows is that he's the one Wallfacer that Trisolaris wants dead. The Three-Body Problem Series The Three-Body Problem The Dark Forest Death's End Other Books by Cixin Liu Ball Lightning Supernova Era To Hold Up the Sky The Wandering Earth A View from the Stars At the Publisher's request, this title is being sold without Digital Rights Management Software (DRM) applied.
Download or read book National Forests in Alabama Record of Decision Final Environmental Impact Statement for the Revised Land and Resource Plan January 2004 written by and published by . This book was released on 2004 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: