EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book DATA SCIENCE WORKSHOP  Parkinson Classification and Prediction Using Machine Learning and Deep Learning with Python GUI

Download or read book DATA SCIENCE WORKSHOP Parkinson Classification and Prediction Using Machine Learning and Deep Learning with Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-07-26 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this data science workshop focused on Parkinson's disease classification and prediction, we begin by exploring the dataset containing features relevant to the disease. We perform data exploration to understand the structure of the dataset, check for missing values, and gain insights into the distribution of features. Visualizations are used to analyze the distribution of features and their relationship with the target variable, which is whether an individual has Parkinson's disease or not. After data exploration, we preprocess the dataset to prepare it for machine learning models. This involves handling missing values, scaling numerical features, and encoding categorical variables if necessary. We ensure that the dataset is split into training and testing sets to evaluate model performance effectively. With the preprocessed dataset, we move on to the classification task. Using various machine learning algorithms such as Logistic Regression, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Naive Bayes, Adaboost, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron (MLP), we train multiple models on the training data. To optimize the hyperparameters of these models, we utilize Grid Search, a technique to exhaustively search for the best combination of hyperparameters. For each machine learning model, we evaluate their performance on the test set using various metrics such as accuracy, precision, recall, and F1-score. These metrics help us understand the model's ability to correctly classify individuals with and without Parkinson's disease. Next, we delve into building an Artificial Neural Network (ANN) for Parkinson's disease prediction. The ANN architecture is designed with input, hidden, and output layers. We utilize the TensorFlow library to construct the neural network with appropriate activation functions, dropout layers, and optimizers. The ANN is trained on the preprocessed data for a fixed number of epochs, and we monitor its training and validation loss and accuracy to ensure proper training. After training the ANN, we evaluate its performance using the same metrics as the machine learning models, comparing its accuracy, precision, recall, and F1-score against the previous models. This comparison helps us understand the benefits and limitations of using deep learning for Parkinson's disease prediction. To provide a user-friendly interface for the classification and prediction process, we design a Python GUI using PyQt. The GUI allows users to load their own dataset, choose data preprocessing options, select machine learning classifiers, train models, and predict using the ANN. The GUI provides visualizations of the data distribution, model performance, and prediction results for better understanding and decision-making. In the GUI, users have the option to choose different data preprocessing techniques, such as raw data, normalization, and standardization, to observe how these techniques impact model performance. The choice of classifiers is also available, allowing users to compare different models and select the one that suits their needs best. Throughout the workshop, we emphasize the importance of proper evaluation metrics and the significance of choosing the right model for Parkinson's disease classification and prediction. We highlight the strengths and weaknesses of each model, enabling users to make informed decisions based on their specific requirements and data characteristics. Overall, this data science workshop provides participants with a comprehensive understanding of Parkinson's disease classification and prediction using machine learning and deep learning techniques. Participants gain hands-on experience in data preprocessing, model training, hyperparameter tuning, and designing a user-friendly GUI for efficient and effective data analysis and prediction.

Book The Applied Data Science Workshop On Medical Datasets Using Machine Learning and Deep Learning with Python GUI

Download or read book The Applied Data Science Workshop On Medical Datasets Using Machine Learning and Deep Learning with Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on with total page 1574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Workshop 1: Heart Failure Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI Cardiovascular diseases (CVDs) are the number 1 cause of death globally taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide. Heart failure is a common event caused by CVDs and this dataset contains 12 features that can be used to predict mortality by heart failure. People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management wherein a machine learning models can be of great help. Dataset used in this project is from Davide Chicco, Giuseppe Jurman. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making 20, 16 (2020). Attribute information in the dataset are as follows: age: Age; anaemia: Decrease of red blood cells or hemoglobin (boolean); creatinine_phosphokinase: Level of the CPK enzyme in the blood (mcg/L); diabetes: If the patient has diabetes (boolean); ejection_fraction: Percentage of blood leaving the heart at each contraction (percentage); high_blood_pressure: If the patient has hypertension (boolean); platelets: Platelets in the blood (kiloplatelets/mL); serum_creatinine: Level of serum creatinine in the blood (mg/dL); serum_sodium: Level of serum sodium in the blood (mEq/L); sex: Woman or man (binary); smoking: If the patient smokes or not (boolean); time: Follow-up period (days); and DEATH_EVENT: If the patient deceased during the follow-up period (boolean). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 2: Cervical Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis). Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. Therefore, early detection of cervical cancer using machine and deep learning models can be of great help. The dataset used in this project is obtained from UCI Repository and kindly acknowledged. This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 3: Chronic Kidney Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Chronic kidney disease is the longstanding disease of the kidneys leading to renal failure. The kidneys filter waste and excess fluid from the blood. As kidneys fail, waste builds up. Symptoms develop slowly and aren't specific to the disease. Some people have no symptoms at all and are diagnosed by a lab test. Medication helps manage symptoms. In later stages, filtering the blood with a machine (dialysis) or a transplant may be required The dataset used in this project was taken over a 2-month period in India with 25 features (eg, red blood cell count, white blood cell count, etc). The target is the 'classification', which is either 'ckd' or 'notckd' - ckd=chronic kidney disease. It contains measures of 24 features for 400 people. Quite a lot of features for just 400 samples. There are 14 categorical features, while 10 are numerical. The dataset needs cleaning: in that it has NaNs and the numeric features need to be forced to floats. Attribute Information: Age(numerical) age in years; Blood Pressure(numerical) bp in mm/Hg; Specific Gravity(categorical) sg - (1.005,1.010,1.015,1.020,1.025); Albumin(categorical) al - (0,1,2,3,4,5); Sugar(categorical) su - (0,1,2,3,4,5); Red Blood Cells(categorical) rbc - (normal,abnormal); Pus Cell (categorical) pc - (normal,abnormal); Pus Cell clumps(categorical) pcc - (present, notpresent); Bacteria(categorical) ba - (present,notpresent); Blood Glucose Random(numerical) bgr in mgs/dl; Blood Urea(numerical) bu in mgs/dl; Serum Creatinine(numerical) sc in mgs/dl; Sodium(numerical) sod in mEq/L; Potassium(numerical) pot in mEq/L; Hemoglobin(numerical) hemo in gms; Packed Cell Volume(numerical); White Blood Cell Count(numerical) wc in cells/cumm; Red Blood Cell Count(numerical) rc in millions/cmm; Hypertension(categorical) htn - (yes,no); Diabetes Mellitus(categorical) dm - (yes,no); Coronary Artery Disease(categorical) cad - (yes,no); Appetite(categorical) appet - (good,poor); Pedal Edema(categorical) pe - (yes,no); Anemia(categorical) ane - (yes,no); and Class (categorical) class - (ckd,notckd). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 4: Lung Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI The effectiveness of cancer prediction system helps the people to know their cancer risk with low cost and it also helps the people to take the appropriate decision based on their cancer risk status. The data is collected from the website online lung cancer prediction system. Total number of attributes in the dataset is 16, while number of instances is 309. Following are attribute information of dataset: Gender: M(male), F(female); Age: Age of the patient; Smoking: YES=2 , NO=1; Yellow fingers: YES=2 , NO=1; Anxiety: YES=2 , NO=1; Peer_pressure: YES=2 , NO=1; Chronic Disease: YES=2 , NO=1; Fatigue: YES=2 , NO=1; Allergy: YES=2 , NO=1; Wheezing: YES=2 , NO=1; Alcohol: YES=2 , NO=1; Coughing: YES=2 , NO=1; Shortness of Breath: YES=2 , NO=1; Swallowing Difficulty: YES=2 , NO=1; Chest pain: YES=2 , NO=1; and Lung Cancer: YES , NO. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 5: Alzheimer’s Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Alzheimer's is a type of dementia that causes problems with memory, thinking and behavior. Symptoms usually develop slowly and get worse over time, becoming severe enough to interfere with daily tasks. Alzheimer's is not a normal part of aging. The greatest known risk factor is increasing age, and the majority of people with Alzheimer's are 65 and older. But Alzheimer's is not just a disease of old age. Approximately 200,000 Americans under the age of 65 have younger-onset Alzheimer’s disease (also known as early-onset Alzheimer’s). The dataset consists of a longitudinal MRI data of 374 subjects aged 60 to 96. Each subject was scanned at least once. Everyone is right-handed. 206 of the subjects were grouped as 'Nondemented' throughout the study. 107 of the subjects were grouped as 'Demented' at the time of their initial visits and remained so throughout the study. 14 subjects were grouped as 'Nondemented' at the time of their initial visit and were subsequently characterized as 'Demented' at a later visit. These fall under the 'Converted' category. Following are some important features in the dataset: EDUC:Years of Education; SES: Socioeconomic Status; MMSE: Mini Mental State Examination; CDR: Clinical Dementia Rating; eTIV: Estimated Total Intracranial Volume; nWBV: Normalize Whole Brain Volume; and ASF: Atlas Scaling Factor. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 6: Parkinson Classification and Prediction Using Machine Learning and Deep Learning with Python GUI The dataset was created by Max Little of the University of Oxford, in collaboration with the National Centre for Voice and Speech, Denver, Colorado, who recorded the speech signals. The original study published the feature extraction methods for general voice disorders. This dataset is composed of a range of biomedical voice measurements from 31 people, 23 with Parkinson's disease (PD). Each column in the table is a particular voice measure, and each row corresponds one of 195 voice recording from these individuals ("name" column). The main aim of the data is to discriminate healthy people from those with PD, according to "status" column which is set to 0 for healthy and 1 for PD. The data is in ASCII CSV format. The rows of the CSV file contain an instance corresponding to one voice recording. There are around six recordings per patient, the name of the patient is identified in the first column. Attribute information of this dataset are as follows: name - ASCII subject name and recording number; MDVP:Fo(Hz) - Average vocal fundamental frequency; MDVP:Fhi(Hz) - Maximum vocal fundamental frequency; MDVP:Flo(Hz) - Minimum vocal fundamental frequency; MDVP:Jitter(%); MDVP:Jitter(Abs); MDVP:RAP; MDVP:PPQ; Jitter:DDP – Several measures of variation in fundamental frequency; MDVP:Shimmer; MDVP:Shimmer(dB); Shimmer:APQ3; Shimmer:APQ5; MDVP:APQ; Shimmer:DDA - Several measures of variation in amplitude; NHR; HNR - Two measures of ratio of noise to tonal components in the voice; status - Health status of the subject (one) - Parkinson's, (zero) – healthy; RPDE,D2 - Two nonlinear dynamical complexity measures; DFA - Signal fractal scaling exponent; and spread1,spread2,PPE - Three nonlinear measures of fundamental frequency variation. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 7: Liver Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Patients with Liver disease have been continuously increasing because of excessive consumption of alcohol, inhale of harmful gases, intake of contaminated food, pickles and drugs. This dataset was used to evaluate prediction algorithms in an effort to reduce burden on doctors. This dataset contains 416 liver patient records and 167 non liver patient records collected from North East of Andhra Pradesh, India. The "Dataset" column is a class label used to divide groups into liver patient (liver disease) or not (no disease). This data set contains 441 male patient records and 142 female patient records. Any patient whose age exceeded 89 is listed as being of age "90". Columns in the dataset: Age of the patient; Gender of the patient; Total Bilirubin; Direct Bilirubin; Alkaline Phosphotase; Alamine Aminotransferase; Aspartate Aminotransferase; Total Protiens; Albumin; Albumin and Globulin Ratio; and Dataset: field used to split the data into two sets (patient with liver disease, or no disease). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Book PYTHON GUI PROJECTS WITH MACHINE LEARNING AND DEEP LEARNING

Download or read book PYTHON GUI PROJECTS WITH MACHINE LEARNING AND DEEP LEARNING written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-01-16 with total page 917 pages. Available in PDF, EPUB and Kindle. Book excerpt: PROJECT 1: THE APPLIED DATA SCIENCE WORKSHOP: Prostate Cancer Classification and Recognition Using Machine Learning and Deep Learning with Python GUI Prostate cancer is cancer that occurs in the prostate. The prostate is a small walnut-shaped gland in males that produces the seminal fluid that nourishes and transports sperm. Prostate cancer is one of the most common types of cancer. Many prostate cancers grow slowly and are confined to the prostate gland, where they may not cause serious harm. However, while some types of prostate cancer grow slowly and may need minimal or even no treatment, other types are aggressive and can spread quickly. The dataset used in this project consists of 100 patients which can be used to implement the machine learning and deep learning algorithms. The dataset consists of 100 observations and 10 variables (out of which 8 numeric variables and one categorical variable and is ID) which are as follows: Id, Radius, Texture, Perimeter, Area, Smoothness, Compactness, Diagnosis Result, Symmetry, and Fractal Dimension. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: THE APPLIED DATA SCIENCE WORKSHOP: Urinary Biomarkers Based Pancreatic Cancer Classification and Prediction Using Machine Learning with Python GUI Pancreatic cancer is an extremely deadly type of cancer. Once diagnosed, the five-year survival rate is less than 10%. However, if pancreatic cancer is caught early, the odds of surviving are much better. Unfortunately, many cases of pancreatic cancer show no symptoms until the cancer has spread throughout the body. A diagnostic test to identify people with pancreatic cancer could be enormously helpful. In a paper by Silvana Debernardi and colleagues, published this year in the journal PLOS Medicine, a multi-national team of researchers sought to develop an accurate diagnostic test for the most common type of pancreatic cancer, called pancreatic ductal adenocarcinoma or PDAC. They gathered a series of biomarkers from the urine of three groups of patients: Healthy controls, Patients with non-cancerous pancreatic conditions, like chronic pancreatitis, and Patients with pancreatic ductal adenocarcinoma. When possible, these patients were age- and sex-matched. The goal was to develop an accurate way to identify patients with pancreatic cancer. The key features are four urinary biomarkers: creatinine, LYVE1, REG1B, and TFF1. Creatinine is a protein that is often used as an indicator of kidney function. YVLE1 is lymphatic vessel endothelial hyaluronan receptor 1, a protein that may play a role in tumor metastasis. REG1B is a protein that may be associated with pancreas regeneration. TFF1 is trefoil factor 1, which may be related to regeneration and repair of the urinary tract. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: DATA SCIENCE CRASH COURSE: Voice Based Gender Classification and Prediction Using Machine Learning and Deep Learning with Python GUI This dataset was created to identify a voice as male or female, based upon acoustic properties of the voice and speech. The dataset consists of 3,168 recorded voice samples, collected from male and female speakers. The voice samples are pre-processed by acoustic analysis in R using the seewave and tuneR packages, with an analyzed frequency range of 0hz-280hz (human vocal range). The following acoustic properties of each voice are measured and included within the CSV: meanfreq: mean frequency (in kHz); sd: standard deviation of frequency; median: median frequency (in kHz); Q25: first quantile (in kHz); Q75: third quantile (in kHz); IQR: interquantile range (in kHz); skew: skewness; kurt: kurtosis; sp.ent: spectral entropy; sfm: spectral flatness; mode: mode frequency; centroid: frequency centroid (see specprop); peakf: peak frequency (frequency with highest energy); meanfun: average of fundamental frequency measured across acoustic signal; minfun: minimum fundamental frequency measured across acoustic signal; maxfun: maximum fundamental frequency measured across acoustic signal; meandom: average of dominant frequency measured across acoustic signal; mindom: minimum of dominant frequency measured across acoustic signal; maxdom: maximum of dominant frequency measured across acoustic signal; dfrange: range of dominant frequency measured across acoustic signal; modindx: modulation index. Calculated as the accumulated absolute difference between adjacent measurements of fundamental frequencies divided by the frequency range; and label: male or female. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: DATA SCIENCE CRASH COURSE: Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Thyroid disease is a general term for a medical condition that keeps your thyroid from making the right amount of hormones. Thyroid typically makes hormones that keep body functioning normally. When the thyroid makes too much thyroid hormone, body uses energy too quickly. The two main types of thyroid disease are hypothyroidism and hyperthyroidism. Both conditions can be caused by other diseases that impact the way the thyroid gland works. Dataset used in this project was from Garavan Institute Documentation as given by Ross Quinlan 6 databases from the Garavan Institute in Sydney, Australia. Approximately the following for each database: 2800 training (data) instances and 972 test instances. This dataset contains plenty of missing data, while 29 or so attributes, either Boolean or continuously-valued. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Book THE APPLIED DATA SCIENCE WORKSHOP  Prostate Cancer Classification and Recognition Using Machine Learning and Deep Learning with Python GUI

Download or read book THE APPLIED DATA SCIENCE WORKSHOP Prostate Cancer Classification and Recognition Using Machine Learning and Deep Learning with Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-07-19 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Applied Data Science Workshop on Prostate Cancer Classification and Recognition using Machine Learning and Deep Learning with Python GUI involved several steps and components. The project aimed to analyze prostate cancer data, explore the features, develop machine learning models, and create a graphical user interface (GUI) using PyQt5. The project began with data exploration, where the prostate cancer dataset was examined to understand its structure and content. Various statistical techniques were employed to gain insights into the data, such as checking the dimensions, identifying missing values, and examining the distribution of the target variable. The next step involved exploring the distribution of features in the dataset. Visualizations were created to analyze the characteristics and relationships between different features. Histograms, scatter plots, and correlation matrices were used to uncover patterns and identify potential variables that may contribute to the classification of prostate cancer. Machine learning models were then developed to classify prostate cancer based on the available features. Several algorithms, including Logistic Regression, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Naive Bayes, Adaboost, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron (MLP), were implemented. Each model was trained and evaluated using appropriate techniques such as cross-validation and grid search for hyperparameter tuning. The performance of each machine learning model was assessed using evaluation metrics such as accuracy, precision, recall, and F1-score. These metrics provided insights into the effectiveness of the models in accurately classifying prostate cancer cases. Model comparison and selection were based on their performance and the specific requirements of the project. In addition to the machine learning models, a deep learning model based on an Artificial Neural Network (ANN) was implemented. The ANN architecture consisted of multiple layers, including input, hidden, and output layers. The ANN model was trained using the dataset, and its performance was evaluated using accuracy and loss metrics. To provide a user-friendly interface for the project, a GUI was designed using PyQt, a Python library for creating desktop applications. The GUI allowed users to interact with the machine learning models and perform tasks such as selecting the prediction method, loading data, training models, and displaying results. The GUI included various graphical components such as buttons, combo boxes, input fields, and plot windows. These components were designed to facilitate data loading, model training, and result visualization. Users could choose the prediction method, view accuracy scores, classification reports, and confusion matrices, and explore the predicted values compared to the actual values. The GUI also incorporated interactive features such as real-time updates of prediction results based on user selections and dynamic plot generation for visualizing model performance. Users could switch between different prediction methods, observe changes in accuracy, and examine the history of training loss and accuracy through plotted graphs. Data preprocessing techniques, such as standardization and normalization, were applied to ensure the consistency and reliability of the machine learning and deep learning models. The dataset was divided into training and testing sets to assess model performance on unseen data and detect overfitting or underfitting. Model persistence was implemented to save the trained machine learning and deep learning models to disk, allowing for easy retrieval and future use. The saved models could be loaded and utilized within the GUI for prediction tasks without the need for retraining. Overall, the Applied Data Science Workshop on Prostate Cancer Classification and Recognition provided a comprehensive framework for analyzing prostate cancer data, developing machine learning and deep learning models, and creating an interactive GUI. The project aimed to assist in the accurate classification and recognition of prostate cancer cases, facilitating informed decision-making and potentially contributing to improved patient outcomes.

Book Data Science and Deep Learning Workshop For Scientists and Engineers

Download or read book Data Science and Deep Learning Workshop For Scientists and Engineers written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-11-04 with total page 1977 pages. Available in PDF, EPUB and Kindle. Book excerpt: WORKSHOP 1: In this workshop, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpose. WORKSHOP 2: In this workshop, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion. In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https://www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose. In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose. In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purpose. WORKSHOP 3: In this workshop, you will implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset provided by Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). WORKSHOP 4: In this workshop, implement deep learning-based image classification on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). WORKSHOP 5: In this workshop, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). WORKSHOP 6: In this worksshop, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Chapter 1, you will learn how to use Scikit-Learn, Scipy, and other libraries to perform how to predict traffic (number of vehicles) in four different junctions using Traffic Prediction Dataset provided by Kaggle (https://www.kaggle.com/fedesoriano/traffic-prediction-dataset/download). This dataset contains 48.1k (48120) observations of the number of vehicles each hour in four different junctions: 1) DateTime; 2) Juction; 3) Vehicles; and 4) ID. In Chapter 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict heart attack using Heart Attack Analysis & Prediction Dataset provided by Kaggle (https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset/download). WORKSHOP 7: In this workshop, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Project 1, you will learn how to use Scikit-Learn, NumPy, Pandas, Seaborn, and other libraries to perform how to predict early stage diabetes using Early Stage Diabetes Risk Prediction Dataset provided by Kaggle (https://www.kaggle.com/ishandutta/early-stage-diabetes-risk-prediction-dataset/download). This dataset contains the sign and symptpom data of newly diabetic or would be diabetic patient. This has been collected using direct questionnaires from the patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh and approved by a doctor. You will develop a GUI using PyQt5 to plot distribution of features, feature importance, cross validation score, and prediced values versus true values. The machine learning models used in this project are Adaboost, Random Forest, Gradient Boosting, Logistic Regression, and Support Vector Machine. In Project 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict breast cancer using Breast Cancer Prediction Dataset provided by Kaggle (https://www.kaggle.com/merishnasuwal/breast-cancer-prediction-dataset/download). Worldwide, breast cancer is the most common type of cancer in women and the second highest in terms of mortality rates.Diagnosis of breast cancer is performed when an abnormal lump is found (from self-examination or x-ray) or a tiny speck of calcium is seen (on an x-ray). After a suspicious lump is found, the doctor will conduct a diagnosis to determine whether it is cancerous and, if so, whether it has spread to other parts of the body. This breast cancer dataset was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. You will develop a GUI using PyQt5 to plot distribution of features, pairwise relationship, test scores, prediced values versus true values, confusion matrix, and decision boundary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. WORKSHOP 8: In this workshop, you will learn how to use Scikit-Learn, TensorFlow, Keras, NumPy, Pandas, Seaborn, and other libraries to implement brain tumor classification and detection with machine learning using Brain Tumor dataset provided by Kaggle. This dataset contains five first order features: Mean (the contribution of individual pixel intensity for the entire image), Variance (used to find how each pixel varies from the neighboring pixel 0, Standard Deviation (the deviation of measured Values or the data from its mean), Skewness (measures of symmetry), and Kurtosis (describes the peak of e.g. a frequency distribution). It also contains eight second order features: Contrast, Energy, ASM (Angular second moment), Entropy, Homogeneity, Dissimilarity, Correlation, and Coarseness. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. The deep learning models used in this project are MobileNet and ResNet50. In this project, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, training loss, and training accuracy. WORKSHOP 9: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform COVID-19 Epitope Prediction using COVID-19/SARS B-cell Epitope Prediction dataset provided in Kaggle. All of three datasets consists of information of protein and peptide: parent_protein_id : parent protein ID; protein_seq : parent protein sequence; start_position : start position of peptide; end_position : end position of peptide; peptide_seq : peptide sequence; chou_fasman : peptide feature; emini : peptide feature, relative surface accessibility; kolaskar_tongaonkar : peptide feature, antigenicity; parker : peptide feature, hydrophobicity; isoelectric_point : protein feature; aromacity: protein feature; hydrophobicity : protein feature; stability : protein feature; and target : antibody valence (target value). The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, Gradient Boosting, XGB classifier, and MLP classifier. Then, you will learn how to use sequential CNN and VGG16 models to detect and predict Covid-19 X-RAY using COVID-19 Xray Dataset (Train & Test Sets) provided in Kaggle. The folder itself consists of two subfolders: test and train. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, training loss, and training accuracy. WORKSHOP 10: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform analyzing and predicting stroke using dataset provided in Kaggle. The dataset consists of attribute information: id: unique identifier; gender: "Male", "Female" or "Other"; age: age of the patient; hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension; heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease; ever_married: "No" or "Yes"; work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"; Residence_type: "Rural" or "Urban"; avg_glucose_level: average glucose level in blood; bmi: body mass index; smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"; and stroke: 1 if the patient had a stroke or 0 if not. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 11: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform classifying and predicting Hepatitis C using dataset provided by UCI Machine Learning Repository. All attributes in dataset except Category and Sex are numerical. Attributes 1 to 4 refer to the data of the patient: X (Patient ID/No.), Category (diagnosis) (values: '0=Blood Donor', '0s=suspect Blood Donor', '1=Hepatitis', '2=Fibrosis', '3=Cirrhosis'), Age (in years), Sex (f,m), ALB, ALP, ALT, AST, BIL, CHE, CHOL, CREA, GGT, and PROT. The target attribute for classification is Category (2): blood donors vs. Hepatitis C patients (including its progress ('just' Hepatitis C, Fibrosis, Cirrhosis). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and ANN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy.

Book THE APPLIED DATA SCIENCE WORKSHOP  Urinary biomarkers Based Pancreatic Cancer Classification and Prediction Using Machine Learning with Python GUI

Download or read book THE APPLIED DATA SCIENCE WORKSHOP Urinary biomarkers Based Pancreatic Cancer Classification and Prediction Using Machine Learning with Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-07-23 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Applied Data Science Workshop on "Urinary Biomarkers-Based Pancreatic Cancer Classification and Prediction Using Machine Learning with Python GUI" embarks on a comprehensive journey, commencing with an in-depth exploration of the dataset. During this initial phase, the structure and size of the dataset are thoroughly examined, and the various features it contains are meticulously studied. The principal objective is to understand the relationship between these features and the target variable, which, in this case, is the diagnosis of pancreatic cancer. The distribution of each feature is analyzed, and potential patterns, trends, or outliers that could significantly impact the model's performance are identified. To ensure the data is in optimal condition for model training, preprocessing steps are undertaken. This involves handling missing values through imputation techniques, such as mean, median, or interpolation, depending on the nature of the data. Additionally, feature engineering is performed to derive new features or transform existing ones, with the aim of enhancing the model's predictive power. In preparation for model building, the dataset is split into training and testing sets. This division is crucial to assess the models' generalization performance on unseen data accurately. To maintain a balanced representation of classes in both sets, stratified sampling is employed, mitigating potential biases in the model evaluation process. The workshop explores an array of machine learning classifiers suitable for pancreatic cancer classification, such as Logistic Regression, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Naive Bayes, Adaboost, Extreme Gradient Boosting, Light Gradient Boosting, Naïve Bayes, and Multi-Layer Perceptron (MLP). For each classifier, three different preprocessing techniques are applied to investigate their impact on model performance: raw (unprocessed data), normalization (scaling data to a similar range), and standardization (scaling data to have zero mean and unit variance). To optimize the classifiers' hyperparameters and boost their predictive capabilities, GridSearchCV, a technique for hyperparameter tuning, is employed. GridSearchCV conducts an exhaustive search over a specified hyperparameter grid, evaluating different combinations to identify the optimal settings for each model and preprocessing technique. During the model evaluation phase, multiple performance metrics are utilized to gauge the efficacy of the classifiers. Commonly used metrics include accuracy, recall, precision, and F1-score. By comprehensively assessing these metrics, the strengths and weaknesses of each model are revealed, enabling a deeper understanding of their performance across different classes of pancreatic cancer. Classification reports are generated to present a detailed breakdown of the models' performance, including precision, recall, F1-score, and support for each class. These reports serve as valuable tools for interpreting model outputs and identifying areas for potential improvement. The workshop highlights the significance of graphical user interfaces (GUIs) in facilitating user interactions with machine learning models. By integrating PyQt, a powerful GUI development library for Python, participants create a user-friendly interface that enables users to interact with the models effortlessly. The GUI provides options to select different preprocessing techniques, visualize model outputs such as confusion matrices and decision boundaries, and gain insights into the models' classification capabilities. One of the primary advantages of the graphical user interface is its ability to offer users a seamless and intuitive experience in predicting and classifying pancreatic cancer based on urinary biomarkers. The GUI empowers users to make informed decisions by allowing them to compare the performance of different classifiers under various preprocessing techniques. Throughout the workshop, a strong emphasis is placed on the significance of proper data preprocessing, hyperparameter tuning, and robust model evaluation. These crucial steps contribute to building accurate and reliable machine learning models for pancreatic cancer prediction. By the culmination of the workshop, participants have gained valuable hands-on experience in data exploration, machine learning model building, hyperparameter tuning, and GUI development, all geared towards addressing the specific challenge of pancreatic cancer classification and prediction. In conclusion, the Applied Data Science Workshop on "Urinary Biomarkers-Based Pancreatic Cancer Classification and Prediction Using Machine Learning with Python GUI" embarks on a comprehensive and transformative journey, bringing together data exploration, preprocessing, machine learning model selection, hyperparameter tuning, model evaluation, and GUI development. The project's focus on pancreatic cancer prediction using urinary biomarkers aligns with the pressing need for early detection and treatment of this deadly disease. As participants delve into the intricacies of machine learning and medical research, they contribute to the broader scientific community's ongoing efforts to combat cancer and improve patient outcomes. Through the integration of data science methodologies and powerful visualization tools, the workshop exemplifies the potential of machine learning in revolutionizing medical diagnostics and healthcare practices.

Book DATA SCIENCE WORKSHOP  Lung Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI

Download or read book DATA SCIENCE WORKSHOP Lung Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI written by Vivian Siahaan and published by . This book was released on 2021-11-14 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The effectiveness of cancer prediction system helps the people to know their cancer risk with low cost and it also helps the people to take the appropriate decision based on their cancer risk status. The data is collected from the website online lung cancer prediction system. Total number of attributes in the dataset is 16, while number of instances is 309. Following are attribute information of dataset: Gender: M(male), F(female); Age: Age of the patient; Smoking: YES=2 , NO=1; Yellow fingers: YES=2 , NO=1; Anxiety: YES=2 , NO=1; Peer_pressure: YES=2 , NO=1; Chronic Disease: YES=2 , NO=1; Fatigue: YES=2 , NO=1; Allergy: YES=2 , NO=1; Wheezing: YES=2 , NO=1; Alcohol: YES=2 , NO=1; Coughing: YES=2 , NO=1; Shortness of Breath: YES=2 , NO=1; Swallowing Difficulty: YES=2 , NO=1; Chest pain: YES=2 , NO=1; and Lung Cancer: YES , NO. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Book Classification and Prediction Projects with Machine Learning and Deep Learning

Download or read book Classification and Prediction Projects with Machine Learning and Deep Learning written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-02-06 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: PROJECT 1: DATA SCIENCE CRASH COURSE: Drinking Water Potability Classification and Prediction Using Machine Learning and Deep Learning with Python Access to safe drinking water is essential to health, a basic human right, and a component of effective policy for health protection. This is important as a health and development issue at a national, regional, and local level. In some regions, it has been shown that investments in water supply and sanitation can yield a net economic benefit, since the reductions in adverse health effects and health care costs outweigh the costs of undertaking the interventions. The drinkingwaterpotability.csv file contains water quality metrics for 3276 different water bodies. The columns in the file are as follows: ph, Hardness, Solids, Chloramines, Sulfate, Conductivity, Organic_carbon, Trihalomethanes, Turbidity, and Potability. Contaminated water and poor sanitation are linked to the transmission of diseases such as cholera, diarrhea, dysentery, hepatitis A, typhoid, and polio. Absent, inadequate, or inappropriately managed water and sanitation services expose individuals to preventable health risks. This is particularly the case in health care facilities where both patients and staff are placed at additional risk of infection and disease when water, sanitation, and hygiene services are lacking. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: DATA SCIENCE CRASH COURSE: Skin Cancer Classification and Prediction Using Machine Learning and Deep Learning Skin cancer develops primarily on areas of sun-exposed skin, including the scalp, face, lips, ears, neck, chest, arms and hands, and on the legs in women. But it can also form on areas that rarely see the light of day — your palms, beneath your fingernails or toenails, and your genital area. Skin cancer affects people of all skin tones, including those with darker complexions. When melanoma occurs in people with dark skin tones, it's more likely to occur in areas not normally exposed to the sun, such as the palms of the hands and soles of the feet. Dataset used in this project contains a balanced dataset of images of benign skin moles and malignant skin moles. The data consists of two folders with each 1800 pictures (224x244) of the two types of moles. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. The deep learning models used are CNN and MobileNet.

Book BRAIN TUMOR  Analysis  Classification  and Detection Using Machine Learning and Deep Learning with Python GUI

Download or read book BRAIN TUMOR Analysis Classification and Detection Using Machine Learning and Deep Learning with Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-06-24 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, you will learn how to use Scikit-Learn, TensorFlow, Keras, NumPy, Pandas, Seaborn, and other libraries to implement brain tumor classification and detection with machine learning using Brain Tumor dataset provided by Kaggle. this dataset contains five first order features: Mean (the contribution of individual pixel intensity for the entire image), Variance (used to find how each pixel varies from the neighboring pixel 0, Standard Deviation (the deviation of measured Values or the data from its mean), Skewness (measures of symmetry), and Kurtosis (describes the peak of e.g. a frequency distribution). it also contains eight second order features: Contrast, Energy, ASM (Angular second moment), Entropy, Homogeneity, Dissimilarity, Correlation, and Coarseness. In this project, various methods and functionalities related to machine learning and deep learning are covered. Here is a summary of the process: Data Preprocessing: Loaded and preprocessed the dataset using various techniques such as feature scaling, encoding categorical variables, and splitting the dataset into training and testing sets.; Feature Selection: Implemented feature selection techniques such as SelectKBest, Recursive Feature Elimination, and Principal Component Analysis to select the most relevant features for the model.; Model Training and Evaluation: Trained and evaluated multiple machine learning models such as Random Forest, AdaBoost, Gradient Boosting, Logistic Regression, and Support Vector Machines using cross-validation and hyperparameter tuning. Implemented ensemble methods like Voting Classifier and Stacking Classifier to combine the predictions of multiple models. Calculated evaluation metrics such as accuracy, precision, recall, F1-score, and mean squared error for each model. Visualized the predictions and confusion matrix for the models using plotting techniques.; Deep Learning Model Building and Training: Built deep learning models using architectures such as MobileNet and ResNet50 for image classification tasks. Compiled and trained the models using appropriate loss functions, optimizers, and metrics. Saved the trained models and their training history for future use.; Visualization and Interaction: Implemented methods to plot the training loss and accuracy curves during model training. Created interactive widgets for displaying prediction results and confusion matrices. Linked the selection of prediction options in combo boxes to trigger the corresponding prediction and visualization functions.; Throughout the process, various libraries and frameworks such as scikit-learn, TensorFlow, and Keras are used to perform the tasks efficiently. The overall goal was to train models, evaluate their performance, visualize the results, and provide an interactive experience for the user to explore different prediction options.

Book In Depth Tutorials  Deep Learning Using Scikit Learn  Keras  and TensorFlow with Python GUI

Download or read book In Depth Tutorials Deep Learning Using Scikit Learn Keras and TensorFlow with Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-06-05 with total page 1459 pages. Available in PDF, EPUB and Kindle. Book excerpt: BOOK 1: LEARN FROM SCRATCH MACHINE LEARNING WITH PYTHON GUI In this book, you will learn how to use NumPy, Pandas, OpenCV, Scikit-Learn and other libraries to how to plot graph and to process digital image. Then, you will learn how to classify features using Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN) models. You will also learn how to extract features using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) algorithms and use them in machine learning. In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. You will also learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, Tutorial Steps To Implement Image Denoising, Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, Tutorial Steps To Extract Detected Objects, Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). In Chapter 4, In this tutorial, you will learn how to use Pandas, NumPy and other libraries to perform simple classification using perceptron and Adaline (adaptive linear neuron). The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron, Tutorial Steps To Implement Perceptron with PyQt, Tutorial Steps To Implement Adaline (ADAptive LInear NEuron), and Tutorial Steps To Implement Adaline with PyQt. In Chapter 5, you will learn how to use the scikit-learn machine learning library, which provides a wide variety of machine learning algorithms via a user-friendly Python API and to perform classification using perceptron, Adaline (adaptive linear neuron), and other models. The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron Using Scikit-Learn, Tutorial Steps To Implement Perceptron Using Scikit-Learn with PyQt, Tutorial Steps To Implement Logistic Regression Model, Tutorial Steps To Implement Logistic Regression Model with PyQt, Tutorial Steps To Implement Logistic Regression Model Using Scikit-Learn with PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Using Scikit-Learn, Tutorial Steps To Implement Decision Tree (DT) Using Scikit-Learn, Tutorial Steps To Implement Random Forest (RF) Using Scikit-Learn, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Using Scikit-Learn. In Chapter 6, you will learn how to use Pandas, NumPy, Scikit-Learn, and other libraries to implement different approaches for reducing the dimensionality of a dataset using different feature selection techniques. You will learn about three fundamental techniques that will help us to summarize the information content of a dataset by transforming it onto a new feature subspace of lower dimensionality than the original one. Data compression is an important topic in machine learning, and it helps us to store and analyze the increasing amounts of data that are produced and collected in the modern age of technology. You will learn the following topics: Principal Component Analysis (PCA) for unsupervised data compression, Linear Discriminant Analysis (LDA) as a supervised dimensionality reduction technique for maximizing class separability, Nonlinear dimensionality reduction via Kernel Principal Component Analysis (KPCA). You will learn: Tutorial Steps To Implement Principal Component Analysis (PCA), Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn, Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Linear Discriminant Analysis (LDA), Tutorial Steps To Implement Linear Discriminant Analysis (LDA) with Scikit-Learn, Tutorial Steps To Implement Linear Discriminant Analysis (LDA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn, and Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn with PyQt. In Chapter 7, you will learn how to use Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset. You will learn: Tutorial Steps To Load MNIST Dataset, Tutorial Steps To Load MNIST Dataset with PyQt, Tutorial Steps To Implement Perceptron With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement , Tutorial Steps To Implement Support Vector Machine (SVM) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt. BOOK 2: THE PRACTICAL GUIDES ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpose. BOOK 3: STEP BY STEP TUTORIALS ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion. In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https://www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose. In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose. In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purpose. BOOK 4: Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, And TensorFlow with Python GUI In this book, implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset provided by Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). BOOK 5: Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI In this book, implement deep learning-based image classification on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize flower using Flowers Recognition dataset provided by Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). BOOK 6: Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI In this book, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify airplane, car, and ship using Multiclass-image-dataset-airplane-car-ship dataset provided by Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar).

Book The Practical Guides on Deep Learning Using SCIKIT LEARN  KERAS  and TENSORFLOW with Python GUI

Download or read book The Practical Guides on Deep Learning Using SCIKIT LEARN KERAS and TENSORFLOW with Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-06-17 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display image histogram. It is a graphical representation that displays the distribution of pixel intensities in an image. It provides information about the frequency of occurrence of each intensity level in the image. The histogram allows us to understand the overall brightness or contrast of the image and can reveal important characteristics such as dynamic range, exposure, and the presence of certain image features. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset. The MNIST dataset is a widely used dataset in machine learning and computer vision, particularly for image classification tasks. It consists of a collection of handwritten digits from zero to nine, where each digit is represented as a 28x28 grayscale image. The dataset was created by collecting handwriting samples from various individuals and then preprocessing them to standardize the format. Each image in the dataset represents a single digit and is labeled with the corresponding digit it represents. The labels range from 0 to 9, indicating the true value of the handwritten digit. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset. Following are the steps taken in this chapter: Dataset Exploration: Explore the Brain Image MRI dataset from Kaggle. Describe the structure of the dataset, the different classes (tumor vs. non-tumor), and any preprocessing steps required; Data Preprocessing: Preprocess the dataset to prepare it for model training. This may include tasks such as resizing images, normalizing pixel values, splitting data into training and testing sets, and creating labels; Model Building: Use TensorFlow and Keras to build a deep learning model for brain tumor detection. Choose an appropriate architecture, such as a convolutional neural network (CNN), and configure the model layers; Model Training: Train the brain tumor detection model using the preprocessed dataset. Specify the loss function, optimizer, and evaluation metrics. Monitor the training process and visualize the training/validation accuracy and loss over epochs; Model Evaluation: Evaluate the trained model on the testing dataset. Calculate metrics such as accuracy, precision, recall, and F1 score to assess the model's performance; Prediction and Visualization: Use the trained model to make predictions on new MRI images. Visualize the predicted results alongside the ground truth labels to demonstrate the effectiveness of the model. Finally, you will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle using MobileNetV2 and CNN models. Following are the steps taken in this chapter: Data Exploration: Load the dataset using Pandas, perform exploratory data analysis (EDA) to gain insights into the data, and visualize the distribution of gender classes; Data Preprocessing: Preprocess the dataset by performing necessary transformations, such as resizing images, converting labels to numerical format, and splitting the data into training, validation, and test sets; Model Building: Use TensorFlow and Keras to build a gender classification model. Define the architecture of the model, compile it with appropriate loss and optimization functions, and summarize the model's structure; Model Training: Train the model on the training set, monitor its performance on the validation set, and tune hyperparameters if necessary. Visualize the training history to analyze the model's learning progress; Model Evaluation: Evaluate the trained model's performance on the test set using various metrics such as accuracy, precision, recall, and F1 score. Generate a classification report and a confusion matrix to assess the model's performance in detail; Prediction and Visualization: Use the trained model to make gender predictions on new, unseen data. Visualize a few sample predictions along with the corresponding images. Finally, you will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset using CNN model. The FER2013 dataset contains facial images categorized into seven different emotions: anger, disgust, fear, happiness, sadness, surprise, and neutral. To perform facial expression recognition using this dataset, you would typically follow these steps; Data Preprocessing: Load and preprocess the dataset. This may involve resizing the images, converting them to grayscale, and normalizing the pixel values; Data Split: Split the dataset into training, validation, and testing sets. The training set is used to train the model, the validation set is used to tune hyperparameters and evaluate the model's performance during training, and the testing set is used to assess the final model's accuracy; Model Building: Build a deep learning model using TensorFlow and Keras. This typically involves defining the architecture of the model, selecting appropriate layers (such as convolutional layers, pooling layers, and fully connected layers), and specifying the activation functions and loss functions; Model Training: Train the model using the training set. This involves feeding the training images through the model, calculating the loss, and updating the model's parameters using optimization techniques like backpropagation and gradient descent; Model Evaluation: Evaluate the trained model's performance using the validation set. This can include calculating metrics such as accuracy, precision, recall, and F1 score to assess how well the model is performing; Model Testing: Assess the model's accuracy and performance on the testing set, which contains unseen data. This step helps determine how well the model generalizes to new, unseen facial expressions; Prediction: Use the trained model to make predictions on new images or live video streams. This involves detecting faces in the images using OpenCV, extracting facial features, and feeding the processed images into the model for prediction. Then, you will also build a GUI application for this purpose.

Book Step by Step Tutorials On Deep Learning Using Scikit Learn  Keras  and Tensorflow with Python GUI

Download or read book Step by Step Tutorials On Deep Learning Using Scikit Learn Keras and Tensorflow with Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-06-18 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion. In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https://www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose. Here's the outline of the steps, focusing on transfer learning: 1. Dataset Preparation: Download the Fruits 360 dataset from Kaggle. Extract the dataset files and organize them into appropriate folders for training and testing. Install the necessary libraries like TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, and NumPy; Data Preprocessing: Use OpenCV to read and load the fruit images from the dataset. Resize the images to a consistent size to feed them into the neural network. Convert the images to numerical arrays using NumPy. Normalize the image pixel values to a range between 0 and 1. Split the dataset into training and testing sets using Scikit-Learn. 3. Building the Model with Transfer Learning: Import the required modules from TensorFlow and Keras. Load a pre-trained model (e.g., VGG16, ResNet50, InceptionV3) without the top (fully connected) layers. Freeze the weights of the pre-trained layers to prevent them from being updated during training. Add your own fully connected layers on top of the pre-trained layers. Compile the model by specifying the loss function, optimizer, and evaluation metrics; 4. Model Training: Use the prepared training data to train the model. Specify the number of epochs and batch size for training. Monitor the training process for accuracy and loss using callbacks; 5. Model Evaluation: Evaluate the trained model on the test dataset using Scikit-Learn. Calculate accuracy, precision, recall, and F1-score for the classification results; 6. Predictions: Load and preprocess new fruit images for prediction using the same steps as in data preprocessing. Use the trained model to predict the class labels of the new images. In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose. The following steps are taken: Set up your development environment: Install the necessary libraries such as TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, and any other dependencies required for the tutorial; Load and preprocess the dataset: Use libraries like OpenCV and NumPy to load and preprocess the dataset. Split the dataset into training and testing sets; Design and train the classification model: Use TensorFlow and Keras to design a convolutional neural network (CNN) model for image classification. Define the architecture of the model, compile it with an appropriate loss function and optimizer, and train it using the training dataset; Evaluate the model: Evaluate the trained model using the testing dataset. Calculate metrics such as accuracy, precision, recall, and F1 score to assess the model's performance; Make predictions: Use the trained model to make predictions on new unseen images. Preprocess the images, feed them into the model, and obtain the predicted class labels; Visualize the results: Use libraries like Matplotlib or OpenCV to visualize the results, such as displaying sample images with their predicted labels, plotting the training/validation loss and accuracy curves, and creating a confusion matrix. In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose. Here are the steps you can follow to perform furniture detection: Dataset Preparation: Extract the dataset files and organize them into appropriate directories for training and testing; Data Preprocessing: Load the dataset using Pandas to analyze and preprocess the data. Explore the dataset to understand its structure, features, and labels. Perform any necessary preprocessing steps like resizing images, normalizing pixel values, and splitting the data into training and testing sets; Feature Extraction and Representation: Use OpenCV or any image processing libraries to extract meaningful features from the images. This might include techniques like edge detection, color-based features, or texture analysis. Convert the images and extracted features into a suitable representation for machine learning models. This can be achieved using NumPy arrays or other formats compatible with the chosen libraries; Model Training: Define a deep learning model using TensorFlow and Keras for furniture detection. You can choose pre-trained models like VGG16, ResNet, or custom architectures. Compile the model with an appropriate loss function, optimizer, and evaluation metrics. Train the model on the preprocessed dataset using the training set. Adjust hyperparameters like batch size, learning rate, and number of epochs to improve performance; Model Evaluation: Evaluate the trained model using the testing set. Calculate metrics such as accuracy, precision, recall, and F1 score to assess the model's performance. Analyze the results and identify areas for improvement; Model Deployment and Inference: Once satisfied with the model's performance, save it to disk for future use. Deploy the model to make predictions on new, unseen images. Use the trained model to perform furniture detection on images by applying it to the test set or new data. In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purpose. Here are the general steps to implement image classification using the Fashion MNIST dataset: Import the necessary libraries: Import the required libraries such as TensorFlow, Keras, NumPy, Pandas, and Matplotlib for handling the dataset, building the model, and visualizing the results; Load and preprocess the dataset: Load the Fashion MNIST dataset, which consists of images of clothing items. Split the dataset into training and testing sets. Preprocess the images by scaling the pixel values to a range of 0 to 1 and converting the labels to categorical format; Define the model architecture: Create a convolutional neural network (CNN) model using Keras. The CNN consists of convolutional layers, pooling layers, and fully connected layers. Choose the appropriate architecture based on the complexity of the dataset; Compile the model: Specify the loss function, optimizer, and evaluation metric for the model. Common choices include categorical cross-entropy for multi-class classification and Adam optimizer; Train the model: Fit the model to the training data using the fit() function. Specify the number of epochs (iterations) and batch size. Monitor the training progress by tracking the loss and accuracy; Evaluate the model: Evaluate the trained model using the test dataset. Calculate the accuracy and other performance metrics to assess the model's performance; Make predictions: Use the trained model to make predictions on new unseen images. Load the test images, preprocess them, and pass them through the model to obtain class probabilities or predictions; Visualize the results: Visualize the training progress by plotting the loss and accuracy curves. Additionally, you can visualize the predictions and compare them with the true labels to gain insights into the model's performance.

Book Deep Learning with Python

Download or read book Deep Learning with Python written by Francois Chollet and published by Simon and Schuster. This book was released on 2017-11-30 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance

Book The The Applied Data Science Workshop

Download or read book The The Applied Data Science Workshop written by Alex Galea and published by Packt Publishing Ltd. This book was released on 2020-07-22 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed with beginners in mind, this workshop helps you make the most of Python libraries and the Jupyter Notebook’s functionality to understand how data science can be applied to solve real-world data problems. Key FeaturesGain useful insights into data science and machine learningExplore the different functionalities and features of a Jupyter NotebookDiscover how Python libraries are used with Jupyter for data analysisBook Description From banking and manufacturing through to education and entertainment, using data science for business has revolutionized almost every sector in the modern world. It has an important role to play in everything from app development to network security. Taking an interactive approach to learning the fundamentals, this book is ideal for beginners. You’ll learn all the best practices and techniques for applying data science in the context of real-world scenarios and examples. Starting with an introduction to data science and machine learning, you’ll start by getting to grips with Jupyter functionality and features. You’ll use Python libraries like sci-kit learn, pandas, Matplotlib, and Seaborn to perform data analysis and data preprocessing on real-world datasets from within your own Jupyter environment. Progressing through the chapters, you’ll train classification models using sci-kit learn, and assess model performance using advanced validation techniques. Towards the end, you’ll use Jupyter Notebooks to document your research, build stakeholder reports, and even analyze web performance data. By the end of The Applied Data Science Workshop, you’ll be prepared to progress from being a beginner to taking your skills to the next level by confidently applying data science techniques and tools to real-world projects. What you will learnUnderstand the key opportunities and challenges in data scienceUse Jupyter for data science tasks such as data analysis and modelingRun exploratory data analysis within a Jupyter NotebookVisualize data with pairwise scatter plots and segmented distributionAssess model performance with advanced validation techniquesParse HTML responses and analyze HTTP requestsWho this book is for If you are an aspiring data scientist who wants to build a career in data science or a developer who wants to explore the applications of data science from scratch and analyze data in Jupyter using Python libraries, then this book is for you. Although a brief understanding of Python programming and machine learning is recommended to help you grasp the topics covered in the book more quickly, it is not mandatory.

Book DATA SCIENCE CRASH COURSE  Drinking Water Potability Classification and Prediction Using Machine Learning and Deep Learning with Python

Download or read book DATA SCIENCE CRASH COURSE Drinking Water Potability Classification and Prediction Using Machine Learning and Deep Learning with Python written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-08-06 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this data science crash course project, we aim to build a classification and prediction model to determine the potability of drinking water using machine learning and deep learning techniques in Python. The first step of the project involves data exploration, where we examine the dataset's structure and characteristics. We identify the target variable, "Potability," which indicates whether the water is safe to drink (1) or not (0). We check for any missing values and handle them appropriately to ensure the dataset's integrity. Next, we analyze the distribution of features in the dataset to understand their statistical properties. We visualize the feature distributions through histograms, box plots, and density plots. This exploration helps us identify potential outliers or skewed features that might require preprocessing. Before building the predictive models, we split the dataset into training and testing sets. The training set is used to train the machine learning models, while the testing set evaluates their performance on unseen data. To start with machine learning models, we employ algorithms Logistic Regression, Support Vector Machines, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting.. We use the Grid Search technique to optimize their hyperparameters, ensuring the best possible performance. After evaluating and selecting the best-performing machine learning model, we explore deep learning techniques using an Artificial Neural Network (ANN). The ANN architecture consists of input, hidden, and output layers. We determine the optimal number of hidden layers and neurons through experimentation. To train the ANN, we use the training data and optimize the model's weights using backpropagation and gradient descent. We also employ techniques like dropout and batch normalization to prevent overfitting. After training the models, we evaluate its performance on the test set. To gauge the model's accuracy, precision, recall, and F1-score, we generate a classification report. Additionally, we plot the training and validation accuracy as well as the loss during the training process to visualize the model's learning progress. For further insights, we plot a confusion matrix, which provides a comprehensive view of the true positive, true negative, false positive, and false negative predictions. This helps us assess the model's performance in handling different classes. Throughout the project, we prioritize model evaluation to ensure reliable predictions. We compute the accuracy score, which gives us an overall understanding of the model's correctness. The classification report provides detailed precision, recall, and F1-score for each class, highlighting how well the model predicts the positive and negative cases. In conclusion, this data science crash course project focuses on drinking water potability classification and prediction using various machine learning and deep learning techniques in Python. The project begins with data exploration and feature distribution analysis, followed by the use of machine learning models with hyperparameter tuning through grid search. Subsequently, deep learning techniques using an Artificial Neural Network (ANN) are employed, and the model's performance is evaluated using multiple metrics. By following this comprehensive approach, we aim to build an accurate and robust model that can effectively predict drinking water potability and contribute to ensuring safe drinking water for communities.

Book Data Science with Python

Download or read book Data Science with Python written by Rohan Chopra and published by . This book was released on 2019-07-09 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Building Machine Learning Systems Using Python

Download or read book Building Machine Learning Systems Using Python written by Dr Deepti Chopra and published by BPB Publications. This book was released on 2021-05-07 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore Machine Learning Techniques, Different Predictive Models, and its Applications Ê KEY FEATURESÊÊ _ Extensive coverage of real examples on implementation and working of ML models. _ Includes different strategies used in Machine Learning by leading data scientists. _ Focuses on Machine Learning concepts and their evolution to algorithms. DESCRIPTIONÊ This book covers basic concepts of Machine Learning, various learning paradigms, different architectures and algorithms used in these paradigms. You will learn the power of ML models by exploring different predictive modeling techniques such as Regression, Clustering, and Classification. You will also get hands-on experience on methods and techniques such as Overfitting, Underfitting, Random Forest, Decision Trees, PCA, and Support Vector Machines. In this book real life examples with fully working of Python implementations are discussed in detail. At the end of the book you will learn about the unsupervised learning covering Hierarchical Clustering, K-means Clustering, Dimensionality Reduction, Anomaly detection, Principal Component Analysis.Ê WHAT YOU WILL LEARN _ Learn to perform data engineering and analysis. _ Build prototype ML models and production ML models from scratch. _ Develop strong proficiency in using scikit-learn and Python. _ Get hands-on experience with Random Forest, Logistic Regression, SVM, PCA, and Neural Networks. WHO THIS BOOK IS FORÊÊ This book is meant for beginners who want to gain knowledge about Machine Learning in detail. This book can also be used by Machine Learning users for a quick reference for fundamentals in Machine Learning. Readers should have basic knowledge of Python and Scikit-Learn before reading the book. TABLE OF CONTENTS 1. Introduction to Machine Learning 2. Linear Regression 3. Classification Using Logistic Regression 4. Overfitting and Regularization 5. Feasibility of Learning 6. Support Vector Machine 7. Neural Network 8. Decision Trees 9. Unsupervised Learning 10. Theory of Generalization 11. Bias and Fairness in ML