Download or read book Data Science written by John D. Kelleher and published by MIT Press. This book was released on 2018-04-13 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.
Download or read book Data Science and Machine Learning written by Diana Benavides-Prado and published by Springer Nature. This book was released on 2023-12-04 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 21st Australasian Conference on Data Science and Machine Learning, AusDM 2023, held in Auckland, New Zealand, during December 11–13, 2023. The 20 full papers presented in this book were carefully reviewed and selected from 50 submissions. The papers are organized in the following topical sections: research track and application track. They deal with topics around data science and machine learning in everyday life.
Download or read book Just Enough Data Science and Machine Learning written by Mark Levene and published by Addison-Wesley Professional. This book was released on 2024-11-01 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to applied data science and machine learning, with minimal math and code required to master the foundational and technical aspects of data science. In Just Enough Data Science and Machine Learning, authors Mark Levene and Martyn Harris present a comprehensive and accessible introduction to data science. It allows the readers to develop an intuition behind the methods adopted in both data science and machine learning, which is the algorithmic component of data science involving the discovery of patterns from input data. This book looks at data science from an applied perspective, where emphasis is placed on the algorithmic aspects of data science and on the fundamental statistical concepts necessary to understand the subject. The book begins by exploring the nature of data science and its origins in basic statistics. The authors then guide readers through the essential steps of data science, starting with exploratory data analysis using visualisation tools. They explain the process of forming hypotheses, building statistical models, and utilising algorithmic methods to discover patterns in the data. Finally, the authors discuss general issues and preliminary concepts that are needed to understand machine learning, which is central to the discipline of data science. The book is packed with practical examples and real-world data sets throughout to reinforce the concepts. All examples are supported by Python code external to the reading material to keep the book timeless. Notable features of this book: Clear explanations of fundamental statistical notions and concepts Coverage of various types of data and techniques for analysis In-depth exploration of popular machine learning tools and methods Insight into specific data science topics, such as social networks and sentiment analysis Practical examples and case studies for real-world application Recommended further reading for deeper exploration of specific topics.
Download or read book Proceedings of the 5th International Conference on Data Science Machine Learning and Applications Volume 2 written by Amit Kumar and published by Springer Nature. This book was released on with total page 1425 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
Download or read book Machine Learning Optimization and Data Science written by Giuseppe Nicosia and published by Springer Nature. This book was released on 2022-02-01 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set, LNCS 13163-13164, constitutes the refereed proceedings of the 7th International Conference on Machine Learning, Optimization, and Data Science, LOD 2021, together with the first edition of the Symposium on Artificial Intelligence and Neuroscience, ACAIN 2021. The total of 86 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 215 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, neuroscience, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.
Download or read book Data Science written by Tiffany Timbers and published by CRC Press. This book was released on 2024-08-23 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science: A First Introduction with Python focuses on using the Python programming language in Jupyter notebooks to perform data manipulation and cleaning, create effective visualizations, and extract insights from data using classification, regression, clustering, and inference. It emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the basics of version control. Based on educational research and active learning principles, the book uses a modern approach to Python and includes accompanying autograded Jupyter worksheets for interactive, self-directed learning. The text will leave readers well-prepared for data science projects. It is designed for learners from all disciplines with minimal prior knowledge of mathematics and programming. The authors have honed the material through years of experience teaching thousands of undergraduates at the University of British Columbia. Key Features: Includes autograded worksheets for interactive, self-directed learning. Introduces readers to modern data analysis and workflow tools such as Jupyter notebooks and GitHub, and covers cutting-edge data analysis and manipulation Python libraries such as pandas, scikit-learn, and altair. Is designed for a broad audience of learners from all backgrounds and disciplines.
Download or read book Data Science written by John D. Kelleher and published by MIT Press. This book was released on 2018-04-13 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.
Download or read book Data Analytics and Machine Learning written by Pushpa Singh and published by Springer Nature. This book was released on with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Data Science and Deep Learning Workshop For Scientists and Engineers written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-11-04 with total page 1977 pages. Available in PDF, EPUB and Kindle. Book excerpt: WORKSHOP 1: In this workshop, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpose. WORKSHOP 2: In this workshop, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion. In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https://www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose. In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose. In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purpose. WORKSHOP 3: In this workshop, you will implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset provided by Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). WORKSHOP 4: In this workshop, implement deep learning-based image classification on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). WORKSHOP 5: In this workshop, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). WORKSHOP 6: In this worksshop, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Chapter 1, you will learn how to use Scikit-Learn, Scipy, and other libraries to perform how to predict traffic (number of vehicles) in four different junctions using Traffic Prediction Dataset provided by Kaggle (https://www.kaggle.com/fedesoriano/traffic-prediction-dataset/download). This dataset contains 48.1k (48120) observations of the number of vehicles each hour in four different junctions: 1) DateTime; 2) Juction; 3) Vehicles; and 4) ID. In Chapter 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict heart attack using Heart Attack Analysis & Prediction Dataset provided by Kaggle (https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset/download). WORKSHOP 7: In this workshop, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Project 1, you will learn how to use Scikit-Learn, NumPy, Pandas, Seaborn, and other libraries to perform how to predict early stage diabetes using Early Stage Diabetes Risk Prediction Dataset provided by Kaggle (https://www.kaggle.com/ishandutta/early-stage-diabetes-risk-prediction-dataset/download). This dataset contains the sign and symptpom data of newly diabetic or would be diabetic patient. This has been collected using direct questionnaires from the patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh and approved by a doctor. You will develop a GUI using PyQt5 to plot distribution of features, feature importance, cross validation score, and prediced values versus true values. The machine learning models used in this project are Adaboost, Random Forest, Gradient Boosting, Logistic Regression, and Support Vector Machine. In Project 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict breast cancer using Breast Cancer Prediction Dataset provided by Kaggle (https://www.kaggle.com/merishnasuwal/breast-cancer-prediction-dataset/download). Worldwide, breast cancer is the most common type of cancer in women and the second highest in terms of mortality rates.Diagnosis of breast cancer is performed when an abnormal lump is found (from self-examination or x-ray) or a tiny speck of calcium is seen (on an x-ray). After a suspicious lump is found, the doctor will conduct a diagnosis to determine whether it is cancerous and, if so, whether it has spread to other parts of the body. This breast cancer dataset was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. You will develop a GUI using PyQt5 to plot distribution of features, pairwise relationship, test scores, prediced values versus true values, confusion matrix, and decision boundary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. WORKSHOP 8: In this workshop, you will learn how to use Scikit-Learn, TensorFlow, Keras, NumPy, Pandas, Seaborn, and other libraries to implement brain tumor classification and detection with machine learning using Brain Tumor dataset provided by Kaggle. This dataset contains five first order features: Mean (the contribution of individual pixel intensity for the entire image), Variance (used to find how each pixel varies from the neighboring pixel 0, Standard Deviation (the deviation of measured Values or the data from its mean), Skewness (measures of symmetry), and Kurtosis (describes the peak of e.g. a frequency distribution). It also contains eight second order features: Contrast, Energy, ASM (Angular second moment), Entropy, Homogeneity, Dissimilarity, Correlation, and Coarseness. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. The deep learning models used in this project are MobileNet and ResNet50. In this project, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, training loss, and training accuracy. WORKSHOP 9: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform COVID-19 Epitope Prediction using COVID-19/SARS B-cell Epitope Prediction dataset provided in Kaggle. All of three datasets consists of information of protein and peptide: parent_protein_id : parent protein ID; protein_seq : parent protein sequence; start_position : start position of peptide; end_position : end position of peptide; peptide_seq : peptide sequence; chou_fasman : peptide feature; emini : peptide feature, relative surface accessibility; kolaskar_tongaonkar : peptide feature, antigenicity; parker : peptide feature, hydrophobicity; isoelectric_point : protein feature; aromacity: protein feature; hydrophobicity : protein feature; stability : protein feature; and target : antibody valence (target value). The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, Gradient Boosting, XGB classifier, and MLP classifier. Then, you will learn how to use sequential CNN and VGG16 models to detect and predict Covid-19 X-RAY using COVID-19 Xray Dataset (Train & Test Sets) provided in Kaggle. The folder itself consists of two subfolders: test and train. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, training loss, and training accuracy. WORKSHOP 10: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform analyzing and predicting stroke using dataset provided in Kaggle. The dataset consists of attribute information: id: unique identifier; gender: "Male", "Female" or "Other"; age: age of the patient; hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension; heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease; ever_married: "No" or "Yes"; work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"; Residence_type: "Rural" or "Urban"; avg_glucose_level: average glucose level in blood; bmi: body mass index; smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"; and stroke: 1 if the patient had a stroke or 0 if not. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 11: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform classifying and predicting Hepatitis C using dataset provided by UCI Machine Learning Repository. All attributes in dataset except Category and Sex are numerical. Attributes 1 to 4 refer to the data of the patient: X (Patient ID/No.), Category (diagnosis) (values: '0=Blood Donor', '0s=suspect Blood Donor', '1=Hepatitis', '2=Fibrosis', '3=Cirrhosis'), Age (in years), Sex (f,m), ALB, ALP, ALT, AST, BIL, CHE, CHOL, CREA, GGT, and PROT. The target attribute for classification is Category (2): blood donors vs. Hepatitis C patients (including its progress ('just' Hepatitis C, Fibrosis, Cirrhosis). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and ANN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy.
Download or read book Introduction to Statistical and Machine Learning Methods for Data Science written by Carlos Andre Reis Pinheiro and published by SAS Institute. This book was released on 2021-08-06 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boost your understanding of data science techniques to solve real-world problems Data science is an exciting, interdisciplinary field that extracts insights from data to solve business problems. This book introduces common data science techniques and methods and shows you how to apply them in real-world case studies. From data preparation and exploration to model assessment and deployment, this book describes every stage of the analytics life cycle, including a comprehensive overview of unsupervised and supervised machine learning techniques. The book guides you through the necessary steps to pick the best techniques and models and then implement those models to successfully address the original business need. No software is shown in the book, and mathematical details are kept to a minimum. This allows you to develop an understanding of the fundamentals of data science, no matter what background or experience level you have.
Download or read book Data Engineering and Data Science written by Kukatlapalli Pradeep Kumar and published by John Wiley & Sons. This book was released on 2023-08-29 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: DATA ENGINEERING and DATA SCIENCE Written and edited by one of the most prolific and well-known experts in the field and his team, this exciting new volume is the “one-stop shop” for the concepts and applications of data science and engineering for data scientists across many industries. The field of data science is incredibly broad, encompassing everything from cleaning data to deploying predictive models. However, it is rare for any single data scientist to be working across the spectrum day to day. Data scientists usually focus on a few areas and are complemented by a team of other scientists and analysts. Data engineering is also a broad field, but any individual data engineer doesn’t need to know the whole spectrum of skills. Data engineering is the aspect of data science that focuses on practical applications of data collection and analysis. For all the work that data scientists do to answer questions using large sets of information, there have to be mechanisms for collecting and validating that information. In this exciting new volume, the team of editors and contributors sketch the broad outlines of data engineering, then walk through more specific descriptions that illustrate specific data engineering roles. Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This book brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Whether for the veteran engineer or scientist working in the field or laboratory, or the student or academic, this is a must-have for any library.
Download or read book DevOps for Data Science written by Alex Gold and published by CRC Press. This book was released on 2024-06-19 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Scientists are experts at analyzing, modelling and visualizing data but, at one point or another, have all encountered difficulties in collaborating with or delivering their work to the people and systems that matter. Born out of the agile software movement, DevOps is a set of practices, principles and tools that help software engineers reliably deploy work to production. This book takes the lessons of DevOps and aplies them to creating and delivering production-grade data science projects in Python and R. This book’s first section explores how to build data science projects that deploy to production with no frills or fuss. Its second section covers the rudiments of administering a server, including Linux, application, and network administration before concluding with a demystification of the concerns of enterprise IT/Administration in its final section, making it possible for data scientists to communicate and collaborate with their organization’s security, networking, and administration teams. Key Features: • Start-to-finish labs take readers through creating projects that meet DevOps best practices and creating a server-based environment to work on and deploy them. • Provides an appendix of cheatsheets so that readers will never be without the reference they need to remember a Git, Docker, or Command Line command. • Distills what a data scientist needs to know about Docker, APIs, CI/CD, Linux, DNS, SSL, HTTP, Auth, and more. • Written specifically to address the concern of a data scientist who wants to take their Python or R work to production. There are countless books on creating data science work that is correct. This book, on the otherhand, aims to go beyond this, targeted at data scientists who want their work to be than merely accurate and deliver work that matters.
Download or read book Spatial Statistics for Data Science written by Paula Moraga and published by CRC Press. This book was released on 2023-12-08 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes R packages for retrieval, manipulation, and visualization of spatial data Offers a comprehensive overview of spatial statistical methods including spatial autocorrelation, clustering, spatial interpolation, model-based geostatistics, and spatial point processes Provides detailed explanations on how to fit and interpret Bayesian spatial models using the integrated nested Laplace approximation (INLA) and stochastic partial differential equation (SPDE) approaches
Download or read book Supervised and Unsupervised Data Engineering for Multimedia Data written by Suman Kumar Swarnkar and published by John Wiley & Sons. This book was released on 2024-04-02 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: SUPERVISED and UNSUPERVISED DATA ENGINEERING for MULTIMEDIA DATA Explore the cutting-edge realms of data engineering in multimedia with Supervised and Unsupervised Data Engineering for Multimedia Data, where expert contributors delve into innovative methodologies, offering invaluable insights to empower both novices and seasoned professionals in mastering the art of manipulating multimedia data with precision and efficiency. Supervised and Unsupervised Data Engineering for Multimedia Data presents a groundbreaking exploration into the intricacies of handling multimedia data through the lenses of both supervised and unsupervised data engineering. Authored by a team of accomplished experts in the field, this comprehensive volume serves as a go-to resource for data scientists, computer scientists, and researchers seeking a profound understanding of cutting-edge methodologies. The book seamlessly integrates theoretical foundations with practical applications, offering a cohesive framework for navigating the complexities of multimedia data. Readers will delve into a spectrum of topics, including artificial intelligence, machine learning, and data analysis, all tailored to the challenges and opportunities presented by multimedia datasets. From foundational principles to advanced techniques, each chapter provides valuable insights, making this book an essential guide for academia and industry professionals alike. Whether you’re a seasoned practitioner or a newcomer to the field, Supervised and Unsupervised Data Engineering for Multimedia Data illuminates the path toward mastery in manipulating and extracting meaningful insights from multimedia data in the modern age.
Download or read book Data Analytics written by Shuai Huang and published by CRC Press. This book was released on 2021-04-15 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analytics: A Small Data Approach is suitable for an introductory data analytics course to help students understand some main statistical learning models. It has many small datasets to guide students to work out pencil solutions of the models and then compare with results obtained from established R packages. Also, as data science practice is a process that should be told as a story, in this book there are many course materials about exploratory data analysis, residual analysis, and flowcharts to develop and validate models and data pipelines. The main models covered in this book include linear regression, logistic regression, tree models and random forests, ensemble learning, sparse learning, principal component analysis, kernel methods including the support vector machine and kernel regression, and deep learning. Each chapter introduces two or three techniques. For each technique, the book highlights the intuition and rationale first, then shows how mathematics is used to articulate the intuition and formulate the learning problem. R is used to implement the techniques on both simulated and real-world dataset. Python code is also available at the book’s website: http://dataanalyticsbook.info.
Download or read book Data Science in Practice written by Tom Alby and published by CRC Press. This book was released on 2023-09-22 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science in Practice is the ideal introduction to data science. With or without math skills, here, you get the all-round view that you need for your projects. This book describes how to properly question data, in order to unearth the treasure that data can be. You will get to know the relevant analysis methods, and will be introduced to the programming language R, which is ideally suited for data analysis. Associated tools like notebooks that make data science programming easily accessible are included in this introduction. Because technology alone is not enough, this book also deals with problems in project implementation, illuminates various fields of application, and does not forget to address ethical aspects. Data Science in Practice includes many examples, notes on errors, decision-making aids, and other practical tips. This book is ideal as a complementary text for university students, and is a useful learning tool for those moving into more data-related roles. Key Features: Success factors and tools for all project phases Includes application examples for various subject areas Introduces many aspects of Data Science, from requirements analysis to data acquisition and visualization