EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Data Mining  Concepts and Techniques

Download or read book Data Mining Concepts and Techniques written by Jiawei Han and published by Elsevier. This book was released on 2011-06-09 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Book Data Mining Techniques

Download or read book Data Mining Techniques written by Michael J. A. Berry and published by John Wiley & Sons. This book was released on 2004-04-09 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many companies have invested in building large databases and data warehouses capable of storing vast amounts of information. This book offers business, sales and marketing managers a practical guide to accessing such information.

Book Advanced Data Mining Techniques

Download or read book Advanced Data Mining Techniques written by David L. Olson and published by Springer Science & Business Media. This book was released on 2008-01-01 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamental concepts of data mining, to demonstrate the potential of gathering large sets of data, and analyzing these data sets to gain useful business understanding. The book is organized in three parts. Part I introduces concepts. Part II describes and demonstrates basic data mining algorithms. It also contains chapters on a number of different techniques often used in data mining. Part III focuses on business applications of data mining.

Book Statistical and Machine Learning Data Mining

Download or read book Statistical and Machine Learning Data Mining written by Bruce Ratner and published by CRC Press. This book was released on 2012-02-28 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has completely revised, reorganized, and repositioned the original chapters and produced 14 new chapters of creative and useful machine-learning data mining techniques. In sum, the 31 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. The statistical data mining methods effectively consider big data for identifying structures (variables) with the appropriate predictive power in order to yield reliable and robust large-scale statistical models and analyses. In contrast, the author's own GenIQ Model provides machine-learning solutions to common and virtually unapproachable statistical problems. GenIQ makes this possible — its utilitarian data mining features start where statistical data mining stops. This book contains essays offering detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. They address each methodology and assign its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.

Book Data Mining

    Book Details:
  • Author : Ian H. Witten
  • Publisher : Elsevier
  • Release : 2011-02-03
  • ISBN : 0080890369
  • Pages : 665 pages

Download or read book Data Mining written by Ian H. Witten and published by Elsevier. This book was released on 2011-02-03 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Book Statistical and Machine Learning Data Mining

Download or read book Statistical and Machine Learning Data Mining written by Bruce Ratner and published by CRC Press. This book was released on 2017-07-12 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in predictive analytics of big data has grown exponentially in the four years since the publication of Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data, Second Edition. In the third edition of this bestseller, the author has completely revised, reorganized, and repositioned the original chapters and produced 13 new chapters of creative and useful machine-learning data mining techniques. In sum, the 43 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. What is new in the Third Edition: The current chapters have been completely rewritten. The core content has been extended with strategies and methods for problems drawn from the top predictive analytics conference and statistical modeling workshops. Adds thirteen new chapters including coverage of data science and its rise, market share estimation, share of wallet modeling without survey data, latent market segmentation, statistical regression modeling that deals with incomplete data, decile analysis assessment in terms of the predictive power of the data, and a user-friendly version of text mining, not requiring an advanced background in natural language processing (NLP). Includes SAS subroutines which can be easily converted to other languages. As in the previous edition, this book offers detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. The author addresses each methodology and assigns its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.

Book Introduction to Algorithms for Data Mining and Machine Learning

Download or read book Introduction to Algorithms for Data Mining and Machine Learning written by Xin-She Yang and published by Academic Press. This book was released on 2019-06-17 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages

Book Data Mining Techniques in CRM

Download or read book Data Mining Techniques in CRM written by Konstantinos K. Tsiptsis and published by John Wiley & Sons. This book was released on 2011-08-24 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an applied handbook for the application of data mining techniques in the CRM framework. It combines a technical and a business perspective to cover the needs of business users who are looking for a practical guide on data mining. It focuses on Customer Segmentation and presents guidelines for the development of actionable segmentation schemes. By using non-technical language it guides readers through all the phases of the data mining process.

Book Data Mining for Business Analytics

Download or read book Data Mining for Business Analytics written by Galit Shmueli and published by John Wiley & Sons. This book was released on 2019-10-14 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

Book Frequent Pattern Mining

Download or read book Frequent Pattern Mining written by Charu C. Aggarwal and published by Springer. This book was released on 2014-08-29 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive reference consists of 18 chapters from prominent researchers in the field. Each chapter is self-contained, and synthesizes one aspect of frequent pattern mining. An emphasis is placed on simplifying the content, so that students and practitioners can benefit from the book. Each chapter contains a survey describing key research on the topic, a case study and future directions. Key topics include: Pattern Growth Methods, Frequent Pattern Mining in Data Streams, Mining Graph Patterns, Big Data Frequent Pattern Mining, Algorithms for Data Clustering and more. Advanced-level students in computer science, researchers and practitioners from industry will find this book an invaluable reference.

Book Data Mining Techniques for the Life Sciences

Download or read book Data Mining Techniques for the Life Sciences written by Oliviero Carugo and published by Humana. This book was released on 2016-08-23 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most life science researchers will agree that biology is not a truly theoretical branch of science. The hype around computational biology and bioinformatics beginning in the nineties of the 20th century was to be short lived (1, 2). When almost no value of practical importance such as the optimal dose of a drug or the three-dimensional structure of an orphan protein can be computed from fundamental principles, it is still more straightforward to determine them experimentally. Thus, experiments and observationsdogeneratetheoverwhelmingpartofinsightsintobiologyandmedicine. The extrapolation depth and the prediction power of the theoretical argument in life sciences still have a long way to go. Yet, two trends have qualitatively changed the way how biological research is done today. The number of researchers has dramatically grown and they, armed with the same protocols, have produced lots of similarly structured data. Finally, high-throu- put technologies such as DNA sequencing or array-based expression profiling have been around for just a decade. Nevertheless, with their high level of uniform data generation, they reach the threshold of totally describing a living organism at the biomolecular level for the first time in human history. Whereas getting exact data about living systems and the sophistication of experimental procedures have primarily absorbed the minds of researchers previously, the weight increasingly shifts to the problem of interpreting accumulated data in terms of biological function and bio- lecular mechanisms.

Book Data Warehousing and Data Mining Techniques for Cyber Security

Download or read book Data Warehousing and Data Mining Techniques for Cyber Security written by Anoop Singhal and published by Springer Science & Business Media. This book was released on 2007-04-06 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of data warehousing and data mining techniques to computer security is an important emerging area, as information processing and internet accessibility costs decline and more and more organizations become vulnerable to cyber attacks. These security breaches include attacks on single computers, computer networks, wireless networks, databases, or authentication compromises. This book describes data warehousing and data mining techniques that can be used to detect attacks. It is designed to be a useful handbook for practitioners and researchers in industry, and is also suitable as a text for advanced-level students in computer science.

Book Grouping Multidimensional Data

Download or read book Grouping Multidimensional Data written by Jacob Kogan and published by Taylor & Francis. This book was released on 2006-02-10 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher description

Book Utilizing Educational Data Mining Techniques for Improved Learning  Emerging Research and Opportunities

Download or read book Utilizing Educational Data Mining Techniques for Improved Learning Emerging Research and Opportunities written by Bhatt, Chintan and published by IGI Global. This book was released on 2019-08-02 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern education has increased its reach through ICT tools and techniques. To manage educational data with the help of modern artificial intelligence, data and web mining techniques on dedicated cloud or grid platforms for educational institutes can be used. By utilizing data science techniques to manage educational data, the safekeeping, delivery, and use of knowledge can be increased for better quality education. Utilizing Educational Data Mining Techniques for Improved Learning: Emerging Research and Opportunities is a critical scholarly resource that explores data mining and management techniques that promote the improvement and optimization of educational data systems. The book intends to provide new models, platforms, tools, and protocols in data science for educational data analysis and introduces innovative hybrid system models dedicated to data science. Including topics such as automatic assessment, educational analytics, and machine learning, this book is essential for IT specialists, data analysts, computer engineers, education professionals, administrators, policymakers, researchers, academicians, and technology experts.

Book Data Mining Methods and Models

Download or read book Data Mining Methods and Models written by Daniel T. Larose and published by John Wiley & Sons. This book was released on 2006-02-02 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply powerful Data Mining Methods and Models to Leverage your Data for Actionable Results Data Mining Methods and Models provides: * The latest techniques for uncovering hidden nuggets of information * The insight into how the data mining algorithms actually work * The hands-on experience of performing data mining on large data sets Data Mining Methods and Models: * Applies a "white box" methodology, emphasizing an understanding of the model structures underlying the softwareWalks the reader through the various algorithms and provides examples of the operation of the algorithms on actual large data sets, including a detailed case study, "Modeling Response to Direct-Mail Marketing" * Tests the reader's level of understanding of the concepts and methodologies, with over 110 chapter exercises * Demonstrates the Clementine data mining software suite, WEKA open source data mining software, SPSS statistical software, and Minitab statistical software * Includes a companion Web site, www.dataminingconsultant.com, where the data sets used in the book may be downloaded, along with a comprehensive set of data mining resources. Faculty adopters of the book have access to an array of helpful resources, including solutions to all exercises, a PowerPoint(r) presentation of each chapter, sample data mining course projects and accompanying data sets, and multiple-choice chapter quizzes. With its emphasis on learning by doing, this is an excellent textbook for students in business, computer science, and statistics, as well as a problem-solving reference for data analysts and professionals in the field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available onlne.

Book Data Mining

    Book Details:
  • Author : Florin Gorunescu
  • Publisher : Springer Science & Business Media
  • Release : 2011-03-10
  • ISBN : 3642197213
  • Pages : 364 pages

Download or read book Data Mining written by Florin Gorunescu and published by Springer Science & Business Media. This book was released on 2011-03-10 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The knowledge discovery process is as old as Homo sapiens. Until some time ago this process was solely based on the ‘natural personal' computer provided by Mother Nature. Fortunately, in recent decades the problem has begun to be solved based on the development of the Data mining technology, aided by the huge computational power of the 'artificial' computers. Digging intelligently in different large databases, data mining aims to extract implicit, previously unknown and potentially useful information from data, since “knowledge is power”. The goal of this book is to provide, in a friendly way, both theoretical concepts and, especially, practical techniques of this exciting field, ready to be applied in real-world situations. Accordingly, it is meant for all those who wish to learn how to explore and analysis of large quantities of data in order to discover the hidden nugget of information.

Book Practical Applications of Data Mining

Download or read book Practical Applications of Data Mining written by Sang Suh and published by Jones & Bartlett Publishers. This book was released on 2012 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to data mining -- Association rules -- Classification learning -- Statistics for data mining -- Rough sets and bayes theories -- Neural networks -- Clustering -- Fuzzy information retrieval.