EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Data Mining and Knowledge Discovery Handbook

Download or read book Data Mining and Knowledge Discovery Handbook written by Oded Maimon and published by Springer Science & Business Media. This book was released on 2006-05-28 with total page 1378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.

Book Advances in Knowledge Discovery and Data Mining

Download or read book Advances in Knowledge Discovery and Data Mining written by Usama M. Fayyad and published by . This book was released on 1996 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.

Book Data Mining

    Book Details:
  • Author : Krzysztof J. Cios
  • Publisher : Springer Science & Business Media
  • Release : 2007-10-05
  • ISBN : 0387367950
  • Pages : 601 pages

Download or read book Data Mining written by Krzysztof J. Cios and published by Springer Science & Business Media. This book was released on 2007-10-05 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.

Book Data Mining Methods for Knowledge Discovery

Download or read book Data Mining Methods for Knowledge Discovery written by Krzysztof J. Cios and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.

Book Knowledge Discovery from Data Streams

Download or read book Knowledge Discovery from Data Streams written by Joao Gama and published by CRC Press. This book was released on 2010-05-25 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents

Book Knowledge Discovery and Data Mining

Download or read book Knowledge Discovery and Data Mining written by O. Maimon and published by Springer Science & Business Media. This book was released on 2000-12-31 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a specific and unified approach to Knowledge Discovery and Data Mining, termed IFN for Information Fuzzy Network methodology. Data Mining (DM) is the science of modelling and generalizing common patterns from large sets of multi-type data. DM is a part of KDD, which is the overall process for Knowledge Discovery in Databases. The accessibility and abundance of information today makes this a topic of particular importance and need. The book has three main parts complemented by appendices as well as software and project data that are accessible from the book's web site (http://www.eng.tau.ac.iV-maimonlifn-kdg£). Part I (Chapters 1-4) starts with the topic of KDD and DM in general and makes reference to other works in the field, especially those related to the information theoretic approach. The remainder of the book presents our work, starting with the IFN theory and algorithms. Part II (Chapters 5-6) discusses the methodology of application and includes case studies. Then in Part III (Chapters 7-9) a comparative study is presented, concluding with some advanced methods and open problems. The IFN, being a generic methodology, applies to a variety of fields, such as manufacturing, finance, health care, medicine, insurance, and human resources. The appendices expand on the relevant theoretical background and present descriptions of sample projects (including detailed results).

Book Data Mining and Knowledge Discovery with Evolutionary Algorithms

Download or read book Data Mining and Knowledge Discovery with Evolutionary Algorithms written by Alex A. Freitas and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics

Book Geographic Data Mining and Knowledge Discovery

Download or read book Geographic Data Mining and Knowledge Discovery written by Harvey J. Miller and published by CRC Press. This book was released on 2001-10-11 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in automated data collection are creating massive databases and a whole new field, Knowledge Discovery Databases (KDD), has emerged to develop new methods of managing and exploiting them. Geographic Data Mining and Knowledge Discovery is the interrogation of large databases using efficient computational methods. The unique challenges brought about by the storing of massive geographical databases - from high resolution satellite-based systems to data from intelligent transportation systems, for example - has led to the field of Geographical Knowledge Discovery (GKD). Geographic or spatial data mining is the exploration of these geographical information databases. Developed out of contributions to the highly-respected Varenius Project in 1999, this collection will be the definitive volume focusing on GKD and addresses the special challenges to be found in knowledge discovery and data mining from geographic databases.

Book Feature Selection for Knowledge Discovery and Data Mining

Download or read book Feature Selection for Knowledge Discovery and Data Mining written by Huan Liu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.

Book Scientific Data Mining and Knowledge Discovery

Download or read book Scientific Data Mining and Knowledge Discovery written by Mohamed Medhat Gaber and published by Springer Science & Business Media. This book was released on 2009-09-19 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mohamed Medhat Gaber “It is not my aim to surprise or shock you – but the simplest way I can summarise is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until – in a visible future – the range of problems they can handle will be coextensive with the range to which the human mind has been applied” by Herbert A. Simon (1916-2001) 1Overview This book suits both graduate students and researchers with a focus on discovering knowledge from scienti c data. The use of computational power for data analysis and knowledge discovery in scienti c disciplines has found its roots with the re- lution of high-performance computing systems. Computational science in physics, chemistry, and biology represents the rst step towards automation of data analysis tasks. The rational behind the developmentof computationalscience in different - eas was automating mathematical operations performed in those areas. There was no attention paid to the scienti c discovery process. Automated Scienti c Disc- ery (ASD) [1–3] represents the second natural step. ASD attempted to automate the process of theory discovery supported by studies in philosophy of science and cognitive sciences. Although early research articles have shown great successes, the area has not evolved due to many reasons. The most important reason was the lack of interaction between scientists and the automating systems.

Book Urban Informatics

    Book Details:
  • Author : Wenzhong Shi
  • Publisher : Springer Nature
  • Release : 2021-04-06
  • ISBN : 9811589836
  • Pages : 941 pages

Download or read book Urban Informatics written by Wenzhong Shi and published by Springer Nature. This book was released on 2021-04-06 with total page 941 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.

Book Temporal Data Mining

Download or read book Temporal Data Mining written by Theophano Mitsa and published by CRC Press. This book was released on 2010-03-10 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.

Book Information Visualization in Data Mining and Knowledge Discovery

Download or read book Information Visualization in Data Mining and Knowledge Discovery written by Usama M. Fayyad and published by Morgan Kaufmann. This book was released on 2002 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text surveys research from the fields of data mining and information visualisation and presents a case for techniques by which information visualisation can be used to uncover real knowledge hidden away in large databases.

Book Data Mining and Knowledge Discovery for Process Monitoring and Control

Download or read book Data Mining and Knowledge Discovery for Process Monitoring and Control written by Xue Z. Wang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern computer-based control systems are able to collect a large amount of information, display it to operators and store it in databases but the interpretation of the data and the subsequent decision making relies mainly on operators with little computer support. This book introduces developments in automatic analysis and interpretation of process-operational data both in real-time and over the operational history, and describes new concepts and methodologies for developing intelligent, state space-based systems for process monitoring, control and diagnosis. The book brings together new methods and algorithms from process monitoring and control, data mining and knowledge discovery, artificial intelligence, pattern recognition, and causal relationship discovery, as well as signal processing. It also provides a framework for integrating plant operators and supervisors into the design of process monitoring and control systems.

Book Data Mining and Knowledge Discovery Technologies

Download or read book Data Mining and Knowledge Discovery Technologies written by David Taniar and published by IGI Global. This book was released on 2008-01 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: As information technology continues to advance in massive increments, the bank of information available from personal, financial, and business electronic transactions and all other electronic documentation and data storage is growing at an exponential rate. With this wealth of information comes the opportunity and necessity to utilize this information to maintain competitive advantage and process information effectively in real-world situations. Data Mining and Knowledge Discovery Technologies presents researchers and practitioners in fields such as knowledge management, information science, Web engineering, and medical informatics, with comprehensive, innovative research on data mining methods, structures, tools, and methods, the knowledge discovery process, and data marts, among many other cutting-edge topics.

Book Multimedia Data Mining and Knowledge Discovery

Download or read book Multimedia Data Mining and Knowledge Discovery written by Valery A. Petrushin and published by Springer Science & Business Media. This book was released on 2007-10-20 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an overview of multimedia data mining and knowledge discovery and discusses the variety of hot topics in multimedia data mining research. It describes the objectives and current tendencies in multimedia data mining research and their applications. Each part contains an overview of its chapters and leads the reader with a structured approach through the diverse subjects in the field.

Book Advances in Machine Learning and Data Mining for Astronomy

Download or read book Advances in Machine Learning and Data Mining for Astronomy written by Michael J. Way and published by CRC Press. This book was released on 2012-03-29 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines