Download or read book The Definitive Guide to Azure Data Engineering written by Ron C. L'Esteve and published by Apress. This book was released on 2021-08-24 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build efficient and scalable batch and real-time data ingestion pipelines, DevOps continuous integration and deployment pipelines, and advanced analytics solutions on the Azure Data Platform. This book teaches you to design and implement robust data engineering solutions using Data Factory, Databricks, Synapse Analytics, Snowflake, Azure SQL database, Stream Analytics, Cosmos database, and Data Lake Storage Gen2. You will learn how to engineer your use of these Azure Data Platform components for optimal performance and scalability. You will also learn to design self-service capabilities to maintain and drive the pipelines and your workloads. The approach in this book is to guide you through a hands-on, scenario-based learning process that will empower you to promote digital innovation best practices while you work through your organization’s projects, challenges, and needs. The clear examples enable you to use this book as a reference and guide for building data engineering solutions in Azure. After reading this book, you will have a far stronger skill set and confidence level in getting hands on with the Azure Data Platform. What You Will Learn Build dynamic, parameterized ELT data ingestion orchestration pipelines in Azure Data Factory Create data ingestion pipelines that integrate control tables for self-service ELT Implement a reusable logging framework that can be applied to multiple pipelines Integrate Azure Data Factory pipelines with a variety of Azure data sources and tools Transform data with Mapping Data Flows in Azure Data Factory Apply Azure DevOps continuous integration and deployment practices to your Azure Data Factory pipelines and development SQL databases Design and implement real-time streaming and advanced analytics solutions using Databricks, Stream Analytics, and Synapse Analytics Get started with a variety of Azure data services through hands-on examples Who This Book Is For Data engineers and data architects who are interested in learning architectural and engineering best practices around ELT and ETL on the Azure Data Platform, those who are creating complex Azure data engineering projects and are searching for patterns of success, and aspiring cloud and data professionals involved in data engineering, data governance, continuous integration and deployment of DevOps practices, and advanced analytics who want a full understanding of the many different tools and technologies that Azure Data Platform provides
Download or read book Guide to the Software Engineering Body of Knowledge Swebok r written by IEEE Computer Society and published by . This book was released on 2014 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the Guide to the Software Engineering Body of Knowledge (SWEBOK(R) Guide), the IEEE Computer Society establishes a baseline for the body of knowledge for the field of software engineering, and the work supports the Society's responsibility to promote the advancement of both theory and practice in this field. It should be noted that the Guide does not purport to define the body of knowledge but rather to serve as a compendium and guide to the knowledge that has been developing and evolving over the past four decades. Now in Version 3.0, the Guide's 15 knowledge areas summarize generally accepted topics and list references for detailed information. The editors for Version 3.0 of the SWEBOK(R) Guide are Pierre Bourque (Ecole de technologie superieure (ETS), Universite du Quebec) and Richard E. (Dick) Fairley (Software and Systems Engineering Associates (S2EA)).
Download or read book Data Engineering with Google Cloud Platform written by Adi Wijaya and published by Packt Publishing Ltd. This book was released on 2022-03-31 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book.
Download or read book Data Engineering on Azure written by Vlad Riscutia and published by Simon and Schuster. This book was released on 2021-08-17 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data
Download or read book 97 Things Every Data Engineer Should Know written by Tobias Macey and published by "O'Reilly Media, Inc.". This book was released on 2021-06-11 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail
Download or read book MITRE Systems Engineering Guide written by and published by . This book was released on 2012-06-05 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book STEP Project Management written by Adedeji B. Badiru and published by CRC Press. This book was released on 2009-04-15 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: While the project management body of knowledge is embraced by disciplines ranging from manufacturing and business to social services and healthcare, the application of efficient project management is of particularly high value in science, technology, and engineering undertakings. STEP Project Management: Guide for Science, Technology, and Engineeri
Download or read book Knowledge Engineering and Management written by Guus Schreiber and published by MIT Press. This book was released on 2000 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The disciplines of knowledge engineering and knowledge management are closely tied. Knowledge engineering deals with the development of information systems in which knowledge and reasoning play pivotal roles. Knowledge management, a newly developed field at the intersection of computer science and management, deals with knowledge as a key resource in modern organizations. Managing knowledge within an organization is inconceivable without the use of advanced information systems; the design and implementation of such systems pose great organization as well as technical challenges.
Download or read book Data Science And Knowledge Engineering For Sensing Decision Support Proceedings Of The 13th International Flins Conference written by Jun Liu and published by World Scientific. This book was released on 2018-07-30 with total page 1625 pages. Available in PDF, EPUB and Kindle. Book excerpt: FLINS, originally an acronym for Fuzzy Logic and Intelligent Technologies in Nuclear Science, is now extended to include Computational Intelligence for applied research. The contributions of the FLINS conference cover state-of-the-art research, development, and technology for computational intelligence systems, with special focuses on data science and knowledge engineering for sensing decision support, both from the foundations and the applications points-of-view.
Download or read book Research Basics written by James V. Spickard and published by SAGE Publications. This book was released on 2016-09-15 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research Basics: Design to Data Analysis in Six Steps offers a fresh and creative approach to the research process based on author James V. Spickard’s decades of teaching experience. Using an intuitive six-step model, readers learn how to craft a research question and then identify a logical process for answering it. Conversational writing and multi-disciplinary examples illuminate the model’s simplicity and power, effectively connecting the “hows” and “whys” behind social science research. Students using this book will learn how to turn their research questions into results.
Download or read book Introduction to Algorithms third edition written by Thomas H. Cormen and published by MIT Press. This book was released on 2009-07-31 with total page 1313 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-based flow. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor. The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, substantial additions to the chapter on recurrence (now called “Divide-and-Conquer”), and an appendix on matrices. It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many exercises and problems have been added for this edition. The international paperback edition is no longer available; the hardcover is available worldwide.
Download or read book Industry Use Cases on Blockchain Technology Applications in IoT and the Financial Sector written by Mahmood, Zaigham and published by IGI Global. This book was released on 2021-03-18 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Blockchain technology presents numerous advantages that include increased transparency, reduced transaction costs, faster transaction settlement, automation of information, increased traceability, improved customer experience, improved digital identity, better cyber security, and user-controlled networks. These potential applications are widespread and diverse including funds transfer, smart contracts, e-voting, efficient supply chain, and more in nearly every sector of society including finance, healthcare, law, trade, real estate, and other important areas. However, there are challenges and limitations that exist such as high energy consumption, limited scalability, complexity, security, network size, lack of regulations, and other critical issues. Nevertheless, blockchain is an attractive technology and has much to offer to the modern-day industry. Industry Use Cases on Blockchain Technology Applications in IoT and the Financial Sector investigates blockchain technology’s adoption and effectiveness in multiple industries and for the internet of things (IoT)-based applications, presents use cases from industrial and financial sectors as well as from other transaction-based services, and fills a gap in this respect by extending the existing body of knowledge in the suggested field. While highlighting topics such as cybersecurity, use cases, and models for blockchain implementation, this book is ideal for business managers, financial accountants, practitioners, researchers, academicians, and students interested in blockchain technology’s role and implementation in IoT and the financial sector.
Download or read book An Introduction to Knowledge Engineering written by Simon Kendal and published by Springer Science & Business Media. This book was released on 2007-08-08 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Knowledge Engineering presents a simple but detailed exp- ration of current and established work in the ?eld of knowledge-based systems and related technologies. Its treatment of the increasing variety of such systems is designed to provide the reader with a substantial grounding in such techno- gies as expert systems, neural networks, genetic algorithms, case-based reasoning systems, data mining, intelligent agents and the associated techniques and meth- ologies. The material is reinforced by the inclusion of numerous activities that provide opportunities for the reader to engage in their own research and re?ection as they progress through the book. In addition, self-assessment questions allow the student to check their own understanding of the concepts covered. The book will be suitable for both undergraduate and postgraduate students in computing science and related disciplines such as knowledge engineering, arti?cial intelligence, intelligent systems, cognitive neuroscience, robotics and cybernetics. vii Contents Foreword vii 1 An Introduction to Knowledge Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Section 1: Data, Information and Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Section 2: Skills of a Knowledge Engineer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Section 3: An Introduction to Knowledge-Based Systems. . . . . . . . . . . . . . . . . 18 2 Types of Knowledge-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Section 1: Expert Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Section 2: Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Section 3: Case-Based Reasoning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Section 4: Genetic Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Section 5: Intelligent Agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Section 6: Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3 Knowledge Acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4 Knowledge Representation and Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Section 1: Using Knowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Section 2: Logic, Rules and Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Section 3: Developing Rule-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Section 4: Semantic Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Download or read book System Design Interview An Insider s Guide written by Alex Xu and published by Independently Published. This book was released on 2020-06-12 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The system design interview is considered to be the most complex and most difficult technical job interview by many. Those questions are intimidating, but don't worry. It's just that nobody has taken the time to prepare you systematically. We take the time. We go slow. We draw lots of diagrams and use lots of examples. You'll learn step-by-step, one question at a time.Don't miss out.What's inside?- An insider's take on what interviewers really look for and why.- A 4-step framework for solving any system design interview question.- 16 real system design interview questions with detailed solutions.- 188 diagrams to visually explain how different systems work.
Download or read book Synergies Between Knowledge Engineering and Software Engineering written by Grzegorz J. Nalepa and published by Springer. This book was released on 2017-09-15 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book compiles a number of contributions originating from the KESE (Knowledge Engineering and Software Engineering) workshop series from 2005 to 2015. The idea behind the series was the realignment of the knowledge engineering discipline and its strong relation to software engineering, as well as to the classical aspects of artificial intelligence research. The book introduces symbiotic work combining these disciplines, such as aspect-oriented and agile engineering, using anti-patterns, and system refinement. Furthermore, it presents successful applications from different areas that were created by combining techniques from both areas.
Download or read book Data Smart written by John W. Foreman and published by John Wiley & Sons. This book was released on 2013-10-31 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.
Download or read book Mastering Azure Synapse Analytics guide to modern data integration written by Sultan Yerbulatov and published by Litres. This book was released on 2024-06-26 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drawing from my extensive hands-on experience as a data engineer, this book presents a deep exploration of Azure Synapse Analytics through detailed explanations, practical examples, and expert insights. Readers will learn to navigate the complexities of modern data analytics, from data ingestion and transformation to dynamic data masking and compliance reporting.